Bridge JavaScript Reference

Adobe Creative Suite2

Al

Adobe

© 2005 Adobe Systems Incorporated. All rights reserved.
Adobe® Creative Suite 2 Bridge JavaScript Reference for Windows™ and Macintosh’.

NOTICE: All information contained herein is the property of Adobe Systems Incorporated. No part of this publication (whether in hardcopy or
electronic form) may be reproduced or transmitted, in any form or by any means, electronic, mechanical, photocopying, recording, or
otherwise, without the prior written consent of Adobe Systems Incorporated. The software described in this document is furnished under
license and may only be used or copied in accordance with the terms of such license.

This publication and the information herein is furnished AS IS, is subject to change without notice, and should not be construed as a
commitment by Adobe Systems Incorporated. Adobe Systems Incorporated assumes no responsibility or liability for any errors or
inaccuracies, makes no warranty of any kind (express, implied, or statutory) with respect to this publication, and expressly disclaims any and
all warranties of merchantability, fitness for particular purposes, and noninfringement of third party rights.

Any references to company names in sample templates are for demonstration purposes only and are not intended to refer to any actual
organization.

Adobe, the Adobe logo, Acrobat, GoLive, lllustrator, Photoshop, InDesign, and Version Cue are either registered trademarks or trademarks of
Adobe Systems Incorporated in the United States and/or other countries.

Apple, Mac, Macintosh, and Mac OS are trademarks of Apple Computer, Inc., registered in the United States and other countries. Microsoft,
and Windows are either registered trademarks or trademarks of Microsoft Corporation in the United States and other countries. JavaScript
and all Java-related marks are trademarks or registered trademarks of Sun Microsystems, Inc. in the United States and other countries. UNIX is
a registered trademark of The Open Group.

All other trademarks are the property of their respective owners.

If this guide is distributed with software that includes an end user agreement, this guide, as well as the software described in it, is furnished
under license and may be used or copied only in accordance with the terms of such license. Except as permitted by any such license, no part
of this guide may be reproduced, stored in a retrieval system, or transmitted, in any form or by any means, electronic, mechanical, recording,
or otherwise, without the prior written permission of Adobe Systems Incorporated. Please note that the content in this guide is protected
under copyright law even if it is not distributed with software that includes an end user license agreement.

The content of this guide is furnished for informational use only, is subject to change without notice, and should not be construed as a
commitment by Adobe Systems Incorporated. Adobe Systems Incorporated assumes no responsibility or liability for any errors or
inaccuracies that may appear in the informational content contained in this guide.

Adobe Systems Incorporated, 345 Park Avenue, San Jose, California 95110, USA.

Contents

Welcome .19
ADOUL THIS BOOK ...ttt tesass s st ssssssassasssssssssssssssasssssasssssassassssssassassassassassasssessessessessassessessassansassansanssnssnses 19
WHO SHOUIA rEAA ThiS DOOK ...ttt s st sssssssssss s ssssssss s sasssessasssssssessassssssssssasssenses 19

WHATL IS 1N ThiS DOOK ...ttt sssssssssssssssssass s sasssssssssssssssssssssssssessssssssssessassssssssssssssassssssssssessassens 19
DOCUMENT CONVENTIONS ...ceeeeerereririctsensisssesistsssessesssssssssssssssssassasssssssssssssssesssssss 20
TYPOGraPhiCal CONVENTIONSuvvereeeereiriirsiesersseissississesssississesssssssses 20

JAVASCIIPT CONVENTIONS ...ttt assssssssssssss s sssssssssssssssssssssssssessssssssssessssessassssessssssssssesssssssesssssnses 20

Where to go fOr MOre INFOIMATION ... sssssesssesssssessssessssessssesssssssssessssessssessssessssesssssssssssssanes 21

Scripting Bridge...

SCHPTING OVEIVIEW ..ucettrerrisisesisesessiss s sssissses 22
EXECUTING SCIIPTS coueireereirieisenrectesiesistsessesssessessssssssstssssssssssssssssssesssssassassesssssssssssssssonsen 22
Communicating with Other Applications 23

The Bridge DOcUMENT ODJECT MOEIucuueeeeeecemecnecereseeeriaseessesseessesaseesssesssesseessssssssesssssssssssssssessssssasesssesssessssssnnes 23
The apPlication AN OCUMENTES.........creeeeeeeerstsessstsssssst sttt st ssssssssssssssesssssassassassasssessessessassassassassassasssnns 24
ThUMDBNAIIS IN OCUMENTS ...ttt it ssssssssssssssssssssssassssssssssasssssasssssssssssssssssssssassssssssssssssssssssssssssssens 25

Thumbnails as NOAE FEFEIENCES ...t sssssssssssassssssesssssssasees 25
Using and accessing thumbnails 25

USET INTEITACE ODJECLS c.uunverreereercesersetsstsssessssssssssssssss s ssasssssssssssssssssssssssssssssssssssssaes 26
NAVIGATION DAFS .cvrrieirieeirerseissiseiseississessssssisssasssssssssssssssssessssssssssssssssssssssssssssssssssssses 26
DHAlOGS c.cereereiniirinsiisesnsississessessssssssssssssssssssssssssssasssssssssssssssssssssesssssssssssssssssessssssssssssssesssssseses et et s R s e s s s s et as 26
IVLENIUS .cceveereeicerensieieasessissssassssssessesssssssesssssssassssssssssssssssssesssssssssssssssssstassssssessssssssssessssssssssssssssssssssssssssssassnssssssssssasssnsen 27
EVENTS ..ttt sttt sssssessesssessesssssssessssssssssssssssssssssssssssstssssssssasssssssassssssssstssssessssssssssssssssssssssassssssasssssssassnsen 27
APPHCALION PIEFEIENCES ...ttt st st sssssss s s ssssssss b st assssssssssssssass s sasssessasssssesasssessesssasssenses 27
The Bridge DOM and the Bridge BrowSEr WINAOW...........ineinieinessessssssssssissssssssssssssssssssssssssnssssssssssssssssssssns 28

Event Handling and Script-Defined Browse Schemes

EVENT HANAIING iN BIUGE ...ttt s sssssss s ssssssssesssssssssssssssssssssssssssssssssssssssessssssassssssssssasssssssssssssassens 31
DEfiNiNG EVENT NANAIELS ...ttt ssssssss s bt ass s e b ssss b s sss s s s sssssssasssessasssasns 31
REGIStENNG EVENT NANGIELS......o ettt s s b st assbessasssassbssssss s sasssssssesssssasssssasssnnns 32
EVENT NaNAIING EXAMPIES.....ciiririreiriisieisseseieissississssssssssssssssssssssssssssssssssssssasssssssssssssssssassssssssssssssssssssssssssssssssssssssns 32
USEI-INTEITACE EVENTS .c.ouuurverreeeeriaeerisesisessssesssseessssessssssssssessssessssssssssessasessssesssssessssessssessssssssssssssssssssessasesssssessssessssessssesssns 35

SCriPt-DEfiN@d BrOWSE SCREMES ...ttt ssssesssssasssessassbessasssasssassssssasssessasssasssessassssssanssans 36
Defining and registering a browse scheme 36

Creating @ User INTErfaceccuiiccnnncccssnncsssnnicssssnesssnsessssssessssess 38

User INtErface OPtiONS fOr SCHPLS...irrrrsiersiesissississses 38
NAVIGATION BAIS....uvuririerreerrinresesessessesssssessesssssessesssssssssssssssssssssesssassssssssssssssssssssssssases 38
DiAlOGS BOXES ..cuereereirrireneisseississsissssssssssssssssssssssssssesssssssssssssssssessssssssssssssassssssssssesssssssssssssssssessssssssssssssssssssssssssssssssssssasssssss 39
CONTENT PANE ..ttt s bbb bbb s bbb stos 39

SCHPTUI USEI INTEITACES ..ot sisssssisssasssesssssssssssssassssssssssssssesssssssssssssasssns 40
DisPlaying SCHPLUI DIGIOGSovureueeunriureiserisetissesisetsssesssessssssssessssssssssssssssssssssssssssssssssssssasssesssssssssssssssssssssssssssssassssssssass 40
Displaying ScriptUl elements in a navigation bar 40

DisSPlaying HTIML iN Bridge......vereeeireseeneinsisssesssisssssssssssssssssssssssssssssssssssssassassssssssess 42
Defining CallDAcks fOr HTIMIL SCIIPTS w.vvvrrereerrerreseesessssssssessnses 42
Executing script functions defined 0N HTML Ul PAgEScoermrivnrnernsinsinssssiesssssesssssssssssssssssssssssssssssssssasssnns 43

Displaying HTML in Bridge Dialogs.......ewieeneiseiseiisssisesssesissesssesssssssssssssssssessssssssssssssssssssssssesssssssssssssssssssssssssasssssssass 44

Adobe Creative Suite 2

Bridge JavaScript Reference 4
Communicating with Bridge from dialog JAVaSCriPL....sssnsisssenns 44
Using callbacks in @an HTIML di@lOgccicrnensinrinsinsississsnssssisssens 45
Calling functions defined in @an HTML dIi@lOgoccueeremermnserineesssesssessaessssessssssssessssessssnessssessssessssesssssess 47
Displaying HTML in @ NaVIGation Barcerreeseenecrseesecsseesseesecssssessecssssessesssesssssessssssesssesssssssssessessasssasssssessessss 47
Using callbacks from an HTML navigation bar................ 47
Calling functions defined in an HTML NaVvigation Darsssens 48
Displaying HTML in the CONTENT PANE....... ettt sisseissesssseissesssesssssssssssssssssssssssssssssassasssasasssssssssssseses 50
Callback example: Requesting specific metadata value for a file 50
Passing Complex Values in REMOTE CallSiinrinenreneiniieeissssssissssssssssssssssssssesses 51
Passing an object from Bridge to HTML/JavaScriptcoeweererreerneeenn. seereeeers s e st saseassaseses 52
Scheduling tasks frOM CAlIDACKSovvrriorrinrierreiisseesssesss 53
Scheduling a remote function execution........cceevvee... .54

4 Using File and FOlder ODjJECtSccveeeccccnnsnicssscssrensssssssncssssnss 56

Overview 56
SPECIYING PAtRS....ooeeeeeerrrsei sttt ssssssssss s s ssassssssssasssnssssssssasssssssssssssssnasssssssns 56
Absolute and relative PATh NAMES ... seissssisssssssisssassssssssssassssssssssssns 56
Character iNterpretation IN PAtNS.... st ssssassssssssssassssssssssssssssssssesssssssssssssasssnns 57
THE NOME IFECLONY ettt ssssss st ss s st sss s b s sass b s s bR st R bR bbb bbb asn b sass b ssnrans 57
VOIUME QN AFIVE NAMES ...ttt sasessssssssessssssssssssssssessssesase st as st sis st b basesasesassasssatssasssssbasessnss 58
IMAC OS VOIUMES .c.eeeeeeeiereeeesaserssessseesseessseessessssssasssssessaseassessssssssssssessssesssssssesssessssssssessssssssssssssssssasesasesssessssssasess 58
WINAOWS AFIVES ...coreeeeeeeeeecrneeneeiseeseeseesssesaseesssssssssssesssssssssssssssasssssesssessasesssessssssssssssesessssssssssessssssssessssssssesssesssesssesess 58
ALIASES..uureereemneemreemneeraseeaseessseesseesseesssesasesss b sssess e s sesssets s s R R R SRR AR R AR R Rt 59
POTADIITY ISSUBS...cuitrrterrtssrers s issssssesssssssssss s sssssssssassssssssssssssssssssssssbessssssesssass s sassssssssssensssssssasessssssasssssssessanssnsssssasssans 59
UNICOAE /O ettt tasse st sssss bt ssssbs st s s bbbttt bbb aseeen 59
FIl@ EXTOr HANAIING cecoeeireeeeieeisriesiestsssssissssssssstsssasssssssnsssssssssssssasssesssssssssssssssssassssssssssassssssasssessasssns 60
5 USING SCHPUL ..ccciinnnniiiniicnnnnensssnsssnssssssssssssssssssesss 61
Overview 61
SCriptUl Programming MOl ... eecereeececeeeseceeeseeseessessessssesssesssesssessssesssesssssssssessssssssessesssesssssssssssssssssssssesssssssesess 61
CrEALING @ WINUOW oottt tessssssssssss s ssasssssssssasssesssssssssasssssssssssssssssssssassenans 61
CONTAINET CIEMENTS ...ttt sttt bbbttt st bbb s st h et bbbttt antas 62
WINAOW JQYOUL ..ottt tssisssss s ssssssssssssssssssssssssssssssstsssssssessssssssssssssssssssssssssssessssssssssessasssssssssssssessssssasssessasssns 62
AddINg €lEMENTS TO CONTAINELSuveureeerreerersreerseeseeseesseeaeessssasesssesssssssessssesssesssesssessssesssesasessssssssssssassssesssssssesssesess 63
CrEATION PrOPEITIES cuuvevererrrtreerrsistssssssessssstssssssssssssasssssssassasssssesssssssesssssssassssssssssesssssssssssssssesssssssessssassessssassesssssssessns 64
ACCESSING Child EIEMENTS ..ot ssssssssssssssssssssssessssssssssssssasssssssssssssassssssssssesssssssssssssns 64
REMOVING EIEMENTS ..ot tsstssessssssssssassssssassasssssssassssssssssssssssssssssssssssssasssnans 65
TYPES OF CONLIONS ettt sttt sb st sass s ssss s b s s s et e b s s b s A e bbb as et s e besssnsasnbens 65
CONTAINETS ..ottt as s s bbb st s st b st s s s s s b st R s tbseb bbbt 65

PANEL ottt ettt ess s s s AR R RS RRRRRanaeRRee 65

GIOUD ceeeecteirestssessssasssssssss st ssssssssssassastessssssss st ssssssesssssssessssssssssssssssssessesssssssessessssasssssssossassssessasessessessnsassssassssesssssssenss 65

USEE INTEITACE CONTIOIS ...ttt sesse bbbt sss bbbt b st bss bbb bbb s bsess 65
STATICTOXE coreeeeercecemeneseireisti sttt sas et et st bbbt b bt bbb asasastant 66
EAIETEXL couvieeeeeeeeeteeeisetise st sas bbb b bt sse st b s bt st et sttt 66

BUTEON ettt esenseseassensse s s sestsses st ass s s e e sse s ses s e s s et aa s s s sesesessnran 66
ICONBUTLON .ot csenaese e s sssesssass s esssass s sese st s s s ses s s st as s s s assesase s sasesssensessns 66

[NIAGIE ittt sssesssssesssssessssssssssssssssssesssssessssssssstsssssessssssssesssssssasesssasessssssssasssssssasssssasesssassssssssssssssssesassaseas 67
CRECKDOX vttt sssssesse st bss b s st st e st bbbttt bbb 67
RAAIOBULLON ...ttt eissseasetasse s st sss bbbt b s bbb bbbttt bbbt ansas 67
PrOGIESSDAN c.cuceeteresrere sttt sb st bbb s sss s sas bR st s s bR e bR R bR bRt R bRt a et R et 67

ST ettt sases s s s s esase st ess s s R R RS R R R R AR 67
SCIONDAN c..oereeeeerreeieerseeseeiseeseensse s eesss e essesasse s s bbb s st s et s e bbb st ssastase 68

Adobe Creative Suite 2

Bridge JavaScript Reference 5
LISTBOX cuuruuerereererenernseenessessesessasassesstssesssssesssssstsssssesssssesssssssssassesssssessssse st sasassesstsassssstssesssssssasssssssesssasessssssssssasssssassssens 68
DIOPDOWNLIST ...ccveeeereeirirereseseesessiessesessssessessesssssssssssssssesssassssssssssess 68
LISTIEOIM cetreeereereseeersetese et sssesssasessssssssssssssssssesssssesssssssssassessessssssssssssssstssasssssessessessessessesssssssssssssssssssssessessessassssseses 68

DiISPIAYING ICONS ... ctirerrirrririisrinsirseeiseissessssssssssisssssssssssssssssssssssssssssssesssssssssssssssssessssssssssesssssssssssssssssesssssssssssssssssssassssssssassssssns 68
PrOMPLS QN QIEITS ..ottt ettt sttt st ss s s bbb s s e s s s s s s st bassassansanstans 69
MOAI QIAIOGS vttt sttt sssssssassssssssssassssssasssssssssssssasssessasssessssesssssssssessssssasssssnsessanssasssnsasssans 69
Creating and using Modal dialogsucrcneenrnrinnsienninssnsisssesssnsenns 69
Dismissing @ MOal AIAl0g ...t ssssssssssssssss st ssses 70
Default aNd CANCEl BIEMENTS ... ssetsesssassssssssssssssssssssssssasssssssssssnes 70
RESOUICE SPECITICATIONS ...vvrvecrierreretsreessestsstes st sssssssessssssesssss s sassssssasssessasssass s sasssasssesbessbasssssbasssessasssesssessanssessanssesssnnses 71
Defining Behavior for Controls with Event Callbacks 73
Defining eVent NANAIEE fFUNCLIONS ...ttt s sesssssss s ssssssssssssassssssssssassessssssssssssssssassssssassssssens 73
SIMUIGLING USEI BVENTS......cuerereterrrsissrssissassssssssssssssanses 73
AUTOMATIC LAYOUT ettt ssisnsesetnsesse s ssssse e s s s bbb s b ass s st seb st bbb s bbb s basasstns 75
DEfAUIL IaYOUL DENAVIONceeeeereerreersisscesretsstsssssesssssesssassssssssssssssssssssssssssssssssssssases 75
AUTOMATIC [QYOUTL PrOPEITIEScereirrvereerersserssisssisssissssssisssssesssasssssssses 76
CONTAINET OFIENTATION.c...curvreurerrirerrererseersesesssssesssssessssssssssssesssssssssssssssssssssasssssessssssssssasssssssssssastsssssesssssssasssssasessssssses 76
AlIGNING CRITAIEN .ttt sb st ssss s sasss s b s ss s e ass st ass bt s b s s basn s s sanbans 76
SEELING MAIGINS couveiereeriereireisireississsssseessssssesss esssasssssssssseses 78
SPACING DETWEEN CRIIAIEN ..ottt s st s s s s sass b s s s sass s sbssass s sassbsssssnsans 79
Determining @ PreferTe@a SIZE..... e sssnes 79
Creating more complex arrangements 79
Creating dYNAMIC CONTENT.....coeceerreeaseemseessessseeseeesseesssessseesseesssssessesssssasssasesssessssssssessssassssssssessssasssssessssssssssssess 81
CuStomM 1ayOUt MANAGET EXAMPIE ... ettt sessssss s sesssssssssassssssssssssssessssssassssssssssssssessassssssssssasssessassssssenees 82
The AutoLayoutManager algorithmcennsnssssesssssssssssesssnns 84
AULOMATIC [AYOUL FESTIIICTIONS oeveeriveeeeeceneeseiseeese e isesssssesse st bsebsses s sssesssessssebssesbsse bbb st bt sse b bssebasesasassas 85
EXQMPIE SCIIPES couteesicereeessetse sttt sessss s sssssstsssssssssassass s ssssssssssesssssassssssssssssesses s sasssss s s ass s s sss et ses s s st s sessassasssnssnssnssnssassans 86
ALEIT DOX DUIIAET ... eeeieiireieiseissiseseisssissassessssssssssssssassssassssssssassssssssssessssssssssssss 86
Resource specification @XAMPIE.......eceresissessssssssessessessasssssssssessasssessasssans 89
LOCAliZAtioN IN SCHPTUI ODJECES ..uvuurverrrrererrsinsiesisssssisssassssssssssssssnses 91
Variable values in [0CAlIZEA STHNGS ..cvererreinrisrinsississsessssssssssssssssssssssssasssssssens 91
ENabling automMatiC 0CAlIZATION ...ttt sssassssns 91

6 Bridge DOM Object Reference «.93
AP ODJECT . eureereririnrerreinsiisissessseissessssssssssesssssssssssssssssssassssssssesssssans 94
AP ODJECE PrOPEITIES ..oucvrertererersrissise s ssssss s sesssssssssassssssassssssssssassssssssssassssssssssasssssssssssssssssssssssssssasssenses 94
AISPIAYDIAIOGS ettt st ssssssssssssss s s sssssassssss b st ass s s s st ase s sass st asn s sssssasnsessasssans 94
AOCUMEBNT ettt sttt sbsse sttt s bbb bbbttt bass 94
AOCUMENTS «.coerrererersseesessseisisssessessssssssssssssssssssssssssssessssssssssssssasssssssssssssesssassssssessssssssssssssssssssssssssssssssassssssssssesssssssssssssns 94
EVENTHANAIETS...... ettt sssssssssssssssisssssessssssssssssssassssssssssasssssssssssssssssssssssssssssssssssassssssssssesssssssssssssns 94

AV OTTEES c.oeo e sssss st st sssssssse s s ssssss s s s s s ss b SsesaERsaEReeR SRR RS R A SRR E R s R s R esnssses 94
JANGUAGE ..ottt ssssss s sssssssssssssssssssassssssesssass s e s s st sssbessssssssssasssessassssnssassssssasssessasssssssenssnssnssenssssssans 94

JOCAIE ettt s R bbbttt 95

NAMNIE. ittt s ts st bbb st st sb s E SRR s b e b SRS RS RSB SERSHSR s RS Rttt bbb 95
PIEFEIENCES ..ucvererrreresissees st sss s sss s sassssss s sass s ssssb st st sbas st st b s st e s a s s b R b At e s R s b A b et ass s bans s ansbans 95
VETSION woerererreersesessssseasessesssssesssssssssesssssessessasssssesssssssssssssasessesssssssssssssssssssasessssssssssssssssssssssssssssasssssssesssssesssssssssssssssssssansas 95

APP ODJECE FUNCLIONS ceovvververrrerrerreereeesetsssesses 95
DEEP ...ttt s bbb R AR AR R AR AR AR AR bRt Re s et Rt en b 95
DIOWSETO ettt sttt s ss st bbbt e b s b sttt bbb asee e 95
DUIAFOIAEICACKE ..ottt sttt e bsse st s te s s sttt bbbt aseas 926
CANCEITASK c.erereeeireerseiseisseisesseesssisssssssssssssssssssssssssssessssssssssssssssssssssssssssessssssssssessssssssssssssssssssssssssssessssssssssesssssssssssssssssess 96

Adobe Creative Suite 2

Bridge JavaScript Reference 6
R ettt bbb AR R A AR R AR A AR AR bR bRt R st n b 926
PIEIIIGNTFIIES ...ttt ss st s s s bbb et st ass s ass et asn s assbasn b s s ass e s esnbasnbans 926
PUIGEAIICACKES ...t s ssssssssssssssssssssssssessssssssssessssssssssssssssssssssssssssessssssssssesssasssssssssssssasess 96
PUIGEFOIAEICACNE ... e sseissesesssisssssisssses sttt sssssssasssssssssssssessssssssssassssssssassasssssesssssssssssssessons 96
QUIT o reeurieeeieernesenessesessesesessesssssssssssssssssssssssssessssssssssssssssssesssssssssssssssssssssssssssessssssessssasssss 97
FEQISTEIBIOWSESCREME ...ttt b s s s s st b s e bR bR s bbb A bbbt st e 97
SCNEUUIETASKcerteririerierisetssissssss s sssssssssssssssssssssstassssssssssasssessssssssssssssssssssssssasssessasssasssessassssssssssssssassssssasssessassssans 97
32 €= 0 £ OO PPN 97

DiIAI0G ODJECT .ourieeereirreirriseiseinsisseissessesssasssssssssssssssassssssssassssssssssessssssssssssss 98
DialOg ODJECT CONSTIUCTON c.uuuirereirrereereisssissssssisssssessssssssssssssassasssssssssssssesssssssssssssssssssssssses 98
DialOg ODJECT PrOPEITIES....uvrieeeereresrenseiernseississsissessssassses 98

ACTIV caeereerereeteessaenessessssss s sssssssssasasssssasasssss st s ass st s bassssssbas et st s b s bt s e ss e e st AR st b e R s Rt as Rt e a st s e e bea et es 98
ClOSING ettt s b st ass s b ss s s s e e bR bR AR RS e R R bR bR bR AR bRt b Rt R en 98
REIGNT ..ottt b s st bbb s bR R R AR AR ARt R s bRt bae 98
MNOAAL oottt ssseessisssassssssssssssssssssssssssessssssessssssssssessssssssssssssasssssssssssssesssssans 98
TIT1E ettt ettt ass s es s bR RS RRR R R Rt tRae 98
WIATN ettt ssssssssssssssssse s ssssssesssa s s s sssa s s s sas s s ssa R e s s s s sse e ssas s bssassesssassnsssnens 98
Dialog ODJECT fFUNCLIONS ..ottt tssasssssssssssssssssasssssssssssssssssssssasssssasssssssens 98
CONTET ettt ettt es sttt sttt s At A st st s bt ee s b st et e st b ae bt e st e s st st ae st et assstasastns 98
ClOS Bttt b st s bR R AR AR AR R AR AR bR AR b R bR en 98
EXECS ereireietseretseestseaseaseasss sttt Rs s RS R SRS s R RS AR RS R SRR SRR R AR bbb bRen 99
OPIEN coeeecerteeestssssssesesstsssassssesssssssssssssessssessssssssssssessssessssssessssssssssssstesssssssssssessseses 99
PIACE oottt sttt s s bbbt A AR AR AR e AR AR AR R R AR AR e ARt bt bansaeee 929
PIINT cooeirtetrecietresissisessestssssestssssessesssssssesssssssassssssssssssssssssassssssssssssstsssssassassssssssssesssssssonsen 99
DOCUMENT ODJECL ...ttt ssassssssssssssssassassssssssssssssasssassssssessssssssssassssssssnsessens 100
DOCUMENT ODJECE PrOPEITIES ..uuceeeterecrerstsrtssississtsssss s sssassssssssssasssssssssssssassssssassssssens 100
QAlIOWDIIAQS ..covrreeierineereisseisissessssisssssssssssssssssssssssssssesssssssssssssssssssssssssssssssssssssssessssssssssssssssssssssssssssessssssssssssssasssssssssssss 100
CONTENTPANEMOAE ...t ssssisssssessssissssssssssssssssssssasssssssssssssssssesssssssssssssesssssssssssssssssesssssseses 100
CONTEXT.cereuecueaeeenreseessesseaseseaseasssessssseassssaseassssastasesssssaseassesasessesssstaseassstasssssassstasesssesassasssesssaseassstassssssastassssssassssssesses 100
T ettt s bbb bR AR AR R AR R R R AR R AR AR R bR E Rt s R e en 100
JSFUNICS ettt st sss s s ssssasasssssasass s s sssssasssssssbasasssss s bassssssbssssnssssseassssassssssssssassasssasssssssanes 100
MAXIMIZEU ..ottt ssssss s sessssssssssssss st sssssssassssssssssessssssssssassssssssssssssssssssssssssssessassssssssssssasssssans 100
MNHNIMIZE . .cetirereireisiseiseississississsississessssssssassssssssssssessssssssssssssesssssssssssssessses 100
NAVDAIS «.ooereireeeieniissessessseisssssesssasssssssssssssssssssssesssssssssssssssssesssssssssssssessssssssasesssasssssssssssssess 101
NOIEEIMIS..oeeieieirieresreresstsesssssesssssseasessesssssesssssssssesssssessessessessessssasssssasesssasesssssssssssssessasssssasssssasesssaseassssessssssssessssassassans 101
OWNIEY .eerieeuiteureseesstessastsssase e st s st s st e st s st s s st ae bt sssbas s s et e s et s st s st ee Rt t e st e st e st e e st ae st se s bt aessatanssastas 101
PrEVIEWLOOPING ccoueeeeerieererineisersesisessessessssessessassssessessssessasssssssass 101
SEIRCLIONS cuuceeveres sttt bsss b st b st e s s ssbRs e es bR s bR bR s bR b a bR e b e Rt n R et en 101
SHOWTNUMBNAINGME ...ceeiriiriereiseinsiseseississesssisssisssasssssssssssss 101
SOITS wvreueureeersenseesseuseasesessesseassssaseasssessasessssssseasassasssseasassasesssssssesstassssaseasssssstastassesssesssesssessssesstasesssssasssssesastassssseasssssseases 102
STATUS ettt ettt ettt sttt st e et es e e b eReE et eRe e e b e b ee b te s et setn 102
TNUMDNQIL oottt s st sss bR R Rt bR bR bR sn s et Rn bt e 102
TNUMDNAIVIEWIMOTE ..ottt ssssss s ssessssssssssessssssassssssssssassssssssssassens 102
VISTDIE ettt sssssssesssssssssssssssssssssessssssessssssssssssssesssssssssssssssssessssssesssassssssssssesssssssssssssesssssssssssssssssssess 102
VISIDIETRUMDNQIS .uceiieeriereirieiseinessississsissssessssssessesssssssssssssesssssssssssssssssasens 103
VISTEUT T coereeectreieeisesesississsssssssssssssssesssssssssssssssssssssssssssessssssssssssssssssssssassssssssssssssssessssssssssssssasssssssssssssesssssssssssssssssssess 103
DOCUMENT ODJECE FUNCLIONS ...vvreerrrisrtrerssissississ st ssssssssssssssssssssssssssasssssssssssssssssasssssssssssssssssssssssssassssssasssssasns 103
DIINGTOFTONT ..ottt st sss s st sss s e s s s s s b st s ass b s st s s s e s b sesn b s s asbesnsassssssassssssanns 103
ClOS Bttt sttt s b AR R AR AR R SRR AR RS e e ReneRseR bR b en 103
AESEIECT c.ueevererreireiseeiss s bss s b s ssss s s bss st ss bR e R Rs RsR sRR ARt et R bbb 0e 104
AESEIECTAIL..cueeeeriereiseeseese sttt sss s s ssss s s sssa b s s s s ssa b s e st s b s bss s s st s ssssssasssssassssss 104

Adobe Creative Suite 2

Bridge JavaScript Reference 7
EXECS ettt st et st et et et bRt RS et R et R E R A bR et e b et Attt ente bt se b st tenas 104
NAXIMNIZE ... ccetereeiresiessie s sses s sss s sesssss s esss s tssastes s st essssatesstessssetessssatasassesassetessatesassssesessesassasessssasessssensssesassssasessasns 104
INHIIITIZE coveveereetseesessstesesessss st ses e s tsssss st sst s ss st s sss e sssssses st s sss st s ssnssssatasssssssassssasssassassessssasssssssnssssssnsassessnses 104
FERITESI couteereetee sttt s b st bbb e bR e e b as b A s et b bR b a e bR bR e s s banen 104
FESEITODEfAUITWOIKSPACE ...ttt sssssss s sssssssasssessassssssbessasssasssssasssassssssssssessassssssessanssassssssanes 104
FESTONE .ttt e st s st e e e s st st ssse e s s s st st et st ass s et st et st e e se e ss s et st tse s seResesat et et e asasareseset et asaasaeseseaeaatate 104
FEVEA .c.uereereeeereceeereeeestes st sssssses s bes s esbesbess s s bbb s b e e s s bbb bbb bas bbb s R bbb bbb s e s R R R b s bt 105
SEIBCT ettt bbbt bbb e bbb bR s AR AR bR A b AR bR A b bbbt bR AR s st s aens 105
L] =T 72 | OO 105

EVENT ODJECT ... vriereiiereiseisseissississssesssssssssssssssssssssssssssessssssssssassssssssssssssssssssssssssssassssssssasssssssssssssssssssasssssssssssssssssssssssssssssssssess 106
EVENT ODJECT PrOPEITIES w.uvereveieeerreesreissessetsesseissssssssssssssissasssssssssssssssssssssssssssssssssssssesssssssssssssess 106
APPPALN e bR bR R AR R R bRt 106
AOCUMEBNT ..ottt aes s b sass s ass bbb bas b b e s bbb b bbb s AR bbb bbb e st s b st s b st s e s aesaensssestensans 106
FAVOIITES ...ttt ses s b as s st bbb bbb AR bbb bt bbb b A b b A b b A bbb b s b benbas 106
ISCONTEXE ettt sttt asa s st st sa st s st st est s sss e sssses st s s ss s et st s s es st s sss s s st st s ssssssenssssssastnsnsantnsnsans 106
1o =14 o o F PP PRSPPSO 106
ODJECT vttt asss s ssss s sssassssssssssa b sssss s sss e s e AR R RS R SRR R SRR R AR R R bR b0 107
117/ 01O OO 107
UP L ettt s s s st bbb st bbbt bbb AR s bbb bbb bR bR bbb s R R R e bt 107
WHIETE ..ottt bbb s bbb bbb et bbb bbb At s b bbbt bae s R s s s A sesbenaens 107
EVENT ODJECE TYPES.cuueerrrereinenreisserssissessesssessns 107
AAPP BVENTS .ecteesisistresistssssssssssssstsssessssassesssssssassessssassessssassassassesssssssesssssssassessasassasaass 107
ClOS ettt s s et b AR AR AR AR bR AR AR R bbbt A s R R s R s R st entans 107
AESTIOY covveettreteeeee ettt sbss bttt st bbb bbbttt ettt bt 107
DOCUMENT EVENTS ...ttt sssstssss s sessssstssssssas e ssssssesessssassssasasassessssasesasssssssssessssssesessssessssesassssessssssns 108
COMPIETE .ttt ssssss st s s sss s b st as s e A s bR eSS R SR bR R bR e ARt bbb asn s bt Rt s anbaeen 108
CPEATE .eereecrreereereerseessssesessesessassssssssssssssesssssssssssssssssassesssssssssssssssssssssssesessssessssssassssssssssssssssesssssssssssssesssesesssssssssssssess 108
Lo 1T =T o TP PRSPPI 108
AESTIOY ouurrtiereeeenseississsssessseisssssssssssssssssssssssssssssssasssssssssssssssssasssessssssessssssssssasssasssssssssssssssssssssssssssssssesssassssssssssassssssessssss 108
1< 0 0] 0 OO 108
QIR .ottt bbb AR bbb bbb bbb bR s ARt st e en 108
JORAE ..ottt bbb se s bbb bbb s bbb bbb R bR b bbb r Rt ten 108
[ORAING et ssssssssssessssssssssssssasssssssssssssassssssssssesssassssssasssesssssssssssssessssssssssesssassssasesssessssssessssssesssns 108
OPIEN ccreertenerseensesesessessesssssssssssssssssssssssessssssesssssssssessssssssssssssssssesssssssssssssssessssesssssssssssssenss 108
L] =T o TP PRTRPROT 108
STOPPEM ottt sssssss b s bbb s s s e a s R R A e RS R AR bR AR a bR en 108
UPIOQAING ottt tsssesssssssssssssasssssssesssssssssassssssssssssssssssssassssssssssssassesssans 108
TRUMBDNQAI @VENTS ..ottt et s s ses s ass s s s bbb bbb sass bbb b b s bes b s aesaes s sessessenen 109
= T Lo SO TEPHOT O TTOTTP PO U RO OEORT O RPRTRTROT 109
AESEIECT ottt st bas st a s s b s s E AR E R bbbt e bbb e e b e A e A s e A e e A bbb bt sanen 109
MOV ettt ettt s s s bbb s e bbb bbb R bbb bbb r R a Rttt 109
INOAITY ettt sttt sttt bbb s e ARkttt 109
ITYOV . .u.ucuitirerereesseseserssstessssssssesssssssssssssssssssssssssssssssssssssssesesessssssssesssesssesessssssssssssesssssssssssesesessssssssssssesesssesessssssssssesssesssases 109
OPIEN ccreeienrrneenseseessesessisssesessssessssssssssssssssssssssssssssesssssssssssssesessesessssssssssssenss 109
OPENWILN ettt s s s s s bbb ba e st ass bbb et s b nbase b s es b s b st bassasssnssnssssnsans 109
PIEVIEW ...evieerrreressisissasssssssessessasassssssssssassasssssssssssssssssssesssssssestesssssssessasassansns 109
FEIMOVE. i cieieeeeeerersiststsssssssessssssssstsssssessssssssssssssesssssssssssessssssssssssssssesssssssssssssssssssssssssssesesesessssssssssesesssesessssssssssesssssssases 110
SEIBCT vttt s s bbbt bbb e s bbb bbb AR AR AR bR bbb R bbbt bR AR st st 110
PreferenNCeSDIAIOg EVENTS ...t ssasssssssssassssssssssassens 110
CANCE] ottt ettt es b s ss s s s st bas s s e s st b et e e b s s as s A s e A e s R s b s s b e b b esEan e s e b s es b s s st bassansaes st sestentans 110
CPEATE .eereeerreereeseesseersasesessssessassssssssssssssesssssssssssssssssassssssssssssssssssssssssssessssssssssssssssssssssssssssssessssssssssssesnsesssesssssssessnss 110

Adobe Creative Suite 2

Bridge JavaScript Reference 8
AESTIOY coureerttreteeeeetisetse it sess ettt s bbb ekttt ettt 110

OK eturrerierrrsstessesssssssstssssssssssassssssssssssssasssssssssssssssssesssssssessasssessesesass s s sessase e s A s e RS s E AR AR R bR R AR e R bR R e en 110
FAVOITES ODJECT .uuvuieriereirsiinieseiseisssssissessssssssssssssssssssssssssssesssssssssssssssssssssssssssesssassssssssssessssssssssssss 111
FAVOIteS ODJECT PrOPEITIESvveeerrerereiseissiseisseissssisssassssssssssssssssns 111
[ENGTN ottt ssssss st ss et s b R RS RS R RR AR bR 111
SECEION ettt sttt as st ss st ss st s st b s s s s e e b st s E R s E R s st st se Rt E R Rs st sn st et snantai 111
FaVOItes ODJECE FUNCLIONS ...ttt sasssssssssssss s sessssssssssassssssssssasssssssssssssssssasssssssassssssassesssans 111
AUAACRII ettt st bbb s bbbttt bbbt in 111
CUEATAIL .ottt ssse bt ssssebss s s sssa s s b s RS RS EsR R RS s RseERsRstRbRsab bR bt 0n 111

TNISEI T etrerereerieseueeasessesese s sssesssssesssssessssssssssssssssssessessesssssesssssssssesssssessessesssssessssssssssssesssasesssssesesssstsssasssssasssssassssssssssssnns 111
FEIMIOVE..c.cucereureeereaseessessessesssseasessssessensessssessessssessessessssessessssessessessssessessssesstssssssesssessssessesssessssssessssssesesssssensesessessesessssens 112
MELAAATA ODJECT ...errvrrereisrinrersrsstss st sssssssssssssssssssssssssssssssssssssssassssssssssassssssssssssssessassssssssssssssssssassssssessssssssssassssssssnsessans 113
MEtadata OB JECE PrOPEITIES. ...ttt ssss s s s sss st ass s sassssssssssasssassbsssasssessassbesssssasssassssssanns 113
LA ettt ss s st s s bR AR AR SR AR AR bR bR e n R baes 113
NAMESPACE ..everereneurrresirseseessssssssssssssassssssssssssssssasssesssssssssss 114
XINPPLOPEITYINGINIEeeeeeeserrereirsirerssisississesssssesssasesssssssssasssssesssssessassessssssssssssesssssssssssssssssssssasssssasssssssesssasessssses 114
EXQIMPIES ..ottt sttt bbbt b et as st b e AR AR e AR AR AR b A e A E e A e e s e 114
Metadata ODJECE FUNCLIONS ...ttt ssssss st sss s sassssssassssssssssasssassssssasssessasssssssassssssassssssans 115
APPIYMELAAAtATEMPIALEeeveeeeeereteietisetisetsetise ettt bsss st s bbb s bt st basa st basesasass 115
NAVBAI ODJECT...uverrtrerereierrissinsiessisssssissessssssssssassssssssssssssessassssssssssessssssssssessssssassssssssssassssssssssessens 116
NAVBAr ODJECT PrOPEITIES ...cveeeeerersnrieereiseissiseiseisssssisssssesssasssssssssssssssssssssssssssssssssssssssassns 116
fI1E ettt eess sttt s eSS RS R RS AR E AR AR ARt 116

REIGNT oot ss s bbb s s Rse s eSS AR R R AR bR 116
JSFUNICS oeeeeierictcieisteisessesssssssssts st sssa s s sss s s ssssssaasssssssssssssstasassssssstsssssasssssssassssssssssssssssssssssssssnssssssssssnss 116

1137/ 01O O PP 117

VISTDIE vttt sttt s sssssssses s bsss st sssssssssssass s s st sss s base e R bt asn bR R bR bR nn s e s Rsn bt e 117
NAVBAr ODJECT FUNCLIONS ...veveeeeeereerreeeseeerssessessisses 117
QA oA s SRR RS s R R R R R R Rk R R0 0n 117
EXECS ettt s st ss st s bR E SRR RS R R AR R s AR ARt AR R 118

PIINT coretrietrerieetrestseisssestssssestssssessessassssessassssessessassssssstssssessasssssssssssssssssssssssssssssssssssssassses 118
PrEfErENCES ODJECE ...ttt sasssssssss s s s st s s s sss s s bR bbb Rt a s bes b nn s e s bt asn b tans 119
PreferenCes ODJECT PrOPEITIES ..ot sssssssssssssssssssssssssssssassssssssssssssssssssssssssssassssssasssssssssssssasssssasns 119
EXTFAMETAAATA. ... e rereerreiseieseississsseissessesssetsssssssssebs s ssse s ssssssssssesssasssassesssabssassesssasssssssssssssesssassssssssssassssssessssss 119
SNOWNGIME .t sssesssssssssssssssssssssassssssssssessssssssssssssasssssssssssssssssssssssssssssssessssssssssssssasssssssssssss 119
BaACKGIOUNACOION .. euieriieineisiisiesseisessssissssssssssissesssns 120
FIlESIZE c.cvvurereerererssisssesssssisssassssssssssssssssssssasssssssssssssassssssssssssssssssssssssssssassssssssssasssessasssssssssssssssssasssssasssssssssssssassessans 120
HIAEEMPEYFIRIAS ..ottt ettt s sb s sttt bbbt 120

LADBI Tttt b s ssss st b s s s s st sss s e b s RS se bae bR R R bR bR s R bRt 120

LADBIZ.cc ettt isssasssassssssessssssssssesesessssssssse s e s sase st as R R s R e baes 120

LADI3B ittt isssassssssssssssssssssssssssssssssssssassssssssasasssssse s AR s e RS R AR RS RR AR bR 120

LADBIA ...ttt sssass bbb s s bR R e e A bR AR R bR bR bR bR baes 120

LADBIS .ottt ass bbb s R R R RS AR R AR R bR bR bR bR bR 120
LANGUAGE ...ceirieerererieesesissesessississsessessssessessssssssssssssssssessssssssssssssssssessses 120
IMRUGCOUNT c.eirereretseissesesssessissessssessssssssssssssssssessessasssssssssssssssesssssssssssssssssssssssssssessssssssessssssssssssssssasssssasssssssasssssssssssns 120
SOWLADEIS ...t isssissssssssssssssssessssssessssssssssssssssssssssssssssassssssssssessssssssssssssasssssssssssssassssssssssasssssssssssss 120
SNOWNGIME.....ceieeirrririreistiseiseissesss i ssssssssisssssessssssssssssssssssssssssssssesssssssssssssssssssasessssssssssssssssssssesssasssssssssssssssssssssses 120
USELOCAICACNES. ...ttt st st st sss s sssssssssss s sssssssssassssssssssssssssssssssssssssassasssssssassssssassenssans 121
ANYPLOPEITYINGIME ...uennneirierersesisesinsissesstssisessssesssssessessssss s sssasssasssssssssssssssssasasstssesssssssesssssasssssssssssssssssssssans 121
PreferenCes ODJECE FUNCLIONS ...t ssssss s ssss s ssssssssesssssssssssssasssssssssssssssssasssssssassssssassssssasns 121
ClBAN ettt s bbb s bbb S Ras e RS E RS RS RR HR R Rk R R b0 121
PreferenCeSDIalog ODJECTcrerreseessenssanns 122

Adobe Creative Suite 2

Bridge JavaScript Reference 9
PreferencesDialog 0DJECt fFUNCLIONS ...ttt sssassssssesses 122
QAAAPANEL .ottt ssss s s s b sssass st s s s e s s n b s s b e bRt s s s R st R s bbb et s bt asn b s e banenn 122

ClOS ettt s s bR R AR SRR RS R SRR R R R R R R R R b0 122
THUMDNQ@I ODJECT c.vueeireirrirriseireiseissisesseissississessessses 123
ThUuMDBNQil ODJECE CONSTIUCTON .oueerceeeeeereeieenareeireereeesseesseessseesseesseesessraseesssesasesssesssessasessssssssesssessssssssessasesssssssesssens 123
NOAE SPECIFIEIS ..uvrvrererererrirrereississ st issssssssssssssssssssessssssssssasssesssssssssssssssssassssssssssessssssasssessasssasssssssessasssssssnsessans 123
Multiple references to the SAME NOAE ... s st sassssssasssssens 124
ThUMDNAI| ODJECE PIrOPEITIES ...t issrssasssssasns 125
AlTASTYPE couveeeeereereississetseriseississss s ssssssssssssssssssasssssssbsssssssssssssssesssassssssssssesssssssssssssasssessssssssssessssssssssssssassssssessssss 125
CRUIATEIN ettt bsss s bsse s s s s s bR s s SR ss st s ettt R sttt 125
CONTAINET cceceeerererrersreeissesiesesseasesssssessssssssssssesssasesssssessssssssssasssssssssssssssssssssssssssassssssssssssssssssasssssssssssssssssssssssssssssssssssnssns 125
CrEATIONDIATE ...ttt sse st as s bssasss st ase s s st s b s st st s s s b e s s asbssssa st sssssasassssssssasssssssanen 125
AISPIAYMOAE ..ottt s s s st bass s s s s s s s s s bR e b bR bbb a s b st Rt s s baeen 125
AISPIAYPALN .ottt st s st s s s sass s s s s s st asn b st s e e et bbb e s b s Rt s e beeen 125
REAAEN ot ss st s bR bR R s R Rs R RR AR bR 125
[ASTMOIfIEADATEceevvverreeeeeseeseeeseesssessesssassssssssasssasssssssns 125
[OCATION cceuveereeeieeessensets st sssesssssses s s ssse st s s sssasssesssessesss st e sasa e sssa s s s e s s s s besassesssassesssesssassnssssssssssess 126
metadata.......... ettt st aen bt aes 126
HMNIETYPC ettt ssstr bbbt bbbt bR bbbttt bbb 126

AN, . eereteeerereueuete ettt sess s ste st s s st ss st ae bt s s e st e st s E b s s s bt s s ee st et s s bt s sttt et s et s sttt a bt s st e aesetn 126
PATENT...eveeeerireerreerierestseseasesssesssssssssssssssssssssssssessssssssssssssssssssssssssns 126

PATN ettt st et s R e AR Ra AR AR AR AR R bbb e AR Rttt 126

SPEC uereeeereenersesssssessssesssssstsssssssssassssastsassss s as et As s R et AR RS S RS E SRR S E SRS E RS E SRS A S E SRR e SRR RS A e e AR s e SR E s R E et R R e R et ens 126
SYNCNTONOUSIMETATATA ... ettt ittt s ss st b s sbase st bbb bttt anss 126

1137/ 01O 126
ThUMDBNAIl ODJECE FUNCLIONS ...ttt ssssssssssssssssssssssssssssassssssssssasssssssssassssssessassssssassssssasns 126
COPYTO ceiereirrisersseseesessessessesssssesssesssssesssssessssssssssssssssssesssssessssssssssssssssasesssasessssssssssssssssasssssssesssssessssssssssasssssssssssssssssssns 126
INOVETO weeceieieereasenessessssessessssssssesssssesssssssssssssassssssssssssssssssssssssasssssssesssassssssssssssssssssssessssssssssssssssssssssssssssssssssassssssseass 127

OPIEN ceeeeienrrreenseseessssesssessssssessesessessssssssssssesenss 127
OPENWILN ottt bbb s s s s bbbt s s b e bR b bR e Rt bbbt Rt s e e en 127
FERITESI ottt sttt s b e bR RS e AR AR R bR bR n R bR R 127
FEIMOVE ...ttt sttt ste sttt s st st s s e st e st bt s st s s ee st s bbbttt bt s st tas st as st s s sntseassntn 128
FESOIVE ettt issessesssassssssssssassssssesasssssssssssssssssssssessssssssssessssssssssssssesssssssssssssesssns 128

7 File and Folder Object Reference cesssssesssssnnsessssennsscses 129
OVEIVIEW .cveterriereeseeseassississesssssassssssssssssssssssossssssssassssssssssssssssssessestsssssssssssssssssssssssssssssonss 129
FIlE OBJECT ..ottt tsssss s ssssssssssssssssss s sssssssssassssssassssssassess s s s e s s assbsss s et e bbb s s et s s sss e s senssssanssessasnsensans 129
File ODJECT CONSTIUCLONS ...vurerrrrteresssessissessasstssssssssssssssssssssssssssssssssssssssassssssssssssssassasssnnes 129
FIlE ClaSS PrOPEITIEScuveeeeeteteetstsrsstesess sttt sass s sssssssssssssessassassassasssssasssss s s sassassassassassses s s sssestessassanssessnssnssassnssanen 130

£ e tureeueeessee s e s s s R s RS ReERRR R R RS R R S R A R R AR SRS R SRR AR ARt R et 130

FIlE Class fUNCLIONSu.vvereeerreseeneessisssesssassssssssassssssssssssssssssssssssssssssssssssssasssssssssssseses 130
AECOUE .ttt s b s bbb Rt s s e e bR b SRR A R A bbb R e bR s b e Rt s R et en 130
ENICOUE .ottt st s s s bt ass b b s s bR s bR bR E AR R R AR R AR AR Rt s R bt en 130
ISENCOAINGAVAIADIE ..ottt tssesssss s sssssss s sssssssssssssssssssssssasssssssssasssessassssssssssssssssssssssssanses 130
OPENDIAIOG ceuvriririerrineireressississeesssisssisssssssssssssissssssssssssssssssssassssssssssessassssss 131
SAVEDNAI0G ettt ssssssesssssss s ssse s s s s s Es R s s R RR R R R b0 131

FIle ODJECT PrOPEITIES ..uvvererierieeerseississessessseisssssasssssssssssssssssssssssssssssssessssssssssessns 132
ADSOIULEURI ...ttt sss s sssssssssssbass s sasssass s ssssssssssssasssssnsssssss s ssssesssesssesbasssssasssnssassssssansasssaneen 132

AlIAS ettt s bbb R e R AR bR R R AR R AR bR E AR et en 132
CIEATEU .uuut sttt bt ss bt ass b b s st s s s e as bR b R RS s E AR bR bR Rt e R asn et bt Rt s R et en 132

CFEATON et sesetese e sssssssesesesessssassssssssesesesassrsssssesssesesesessssssesesesesesesensessesesesesessassssesesesessasssasesssesesensnsanes 132

Adobe Creative Suite 2

Bridge JavaScript Reference 10
ENCOTING coeetrrerierereres st iesssesss st sssssssssss s sssssass s et ass bR e b s R AR R e s R e Rt Rt e s b asn b s bt Rt s s anbaeen 132

EOF et s s bR R e AR AR AR AR R SRR R AR AR Rt s R e en 132
EITOF cutreeerienessesessesesessesessessssssesssssssssessssssssssssssssssesssssssssssssessssessssssssssessssess 132
EXISTS cuururrerrerterusrstssssssssstssssesstesassastssssssssssassssassasssssessssassessssassestsssssassssssassesssssssassassstessssassensessssassesassessessssassessesassessesases 132
FSNGIMIE ...ttt sttt b bbb e b s st b et ass s bR e s A s bA bR b e bRt bbb R b A bR ss s et bRt et ans 132
REAAEN ot bbb s bR RS s A bR SRR R b R bRt n R bR tans 132
[ENGEN oottt a s bR R R RS R AR AR AR bR et n R e n bR 132
[INEFEEU. ...ttt sb st sss s s s s s e s s s RS a s RS en bRt et b asn e asa bRt b asn bt snen 132
MNOAIFIEU ...cveveerieeeeterisses et b st b s s st s e bbb bbb R b A bbb A bbb et b are b et bans b santn 132
NMAIMNE..c.cueurreeeerisesersttsessssessessssssasssssssssssssssssssssssssssssessessssessssssssesssssssssssessssessssssssssssssssssessssssesens 132
PATENT...cveeerrireerriirresestsessasessessessssssssess 132
PALN et b s b R R e AR AR AR AR AR bR bR b n R baes 133
FEATONIY oottt sttt a bbbttt 133
FERIALIVEURI ...ttt sttt s s sss b sss s s b s s s st s s bbb as s bbb e bR s s et snsssbasssantasns 133

L1377 0O 133
File OBDJECE FUNCHIONS. ...ttt eesssssse s ssssssss s ssssssssssssssssassssssssasssassssssssasssasssssssssssssssssssssssssnsssssssseses 133
ClOS ettt s s et b RS seReSR A e A AR AR AR AR AR AR b ba s R s R s R s ResRentens 133
COPY cuerenerreenerstnsusestesseensastsssastussstsssstetassstssassstesastssassstassssstasssssssssntassstetassstssssassussetesassstessstassssstasssstasssssssssstasssssassssncas 133
CLEATEAIIAS «.cevvvereerrrierese st bsssass b s s b s s bess s s base s s e R s b bR b s bR s bR bbb R e s b asn b s bt Rsn b s anbaneen 133
EXEOCULL .ttt sttt st s st sttt ssea s sttt E st s bt s st e s bt e s et s st s st st st s st esasastasaeses 133
GELREIATIVEURI ...t ssetessssissessssssssssssssssssssssssssssessssssssssssssassassssssesssss 133
OPIEN ccreerreenrineeassseessesesssssssssssssssstsssssssssssssssssssssssssssssssassssssssssssssssessssessssssessssssssssssssssssssssssssssesesssssssssssssessssesssssssssesesenss 134
OPENDIG cceierirenreisrisseseissississssssssssssssssssssesssssssssssssssssssssssssssssssssssssssesssassssssssssesssssssssssssasssasssssssssssssssssessssssssssesssssssses 135
AU w.vurrvuretsreresserstssssssssssassssssass s ssssssss s sssssess st ass s ses AR e R e bR AR bR R bR A AR bR bR n R b n R taes 135
FEATCN ottt bbbt bR s st bR SRR bR AR AR R bR bRt n R bRt 135
FEATIN w.euve ettt b st st ess st s e s et s e bR eSS Ea e bR bR AR R b R bRt n R b n R baes 135
FEIMOVE . .u.ciueurineneuniisesstsssssssssssessessssssssssssssssssessssssesens 135
FENAMNE...cucurrrirenerreesseesessessssssesssessessssssssss 136
FESOIVE cuueeeereenreiereseisessssiseisssssessassssssssessssassssssssssssssssessssssssssessssssssssssssesssssssssssssesssns 136
SAVEDIG covurterereisiesirssis st sss st sss bbb s s s s s R A R AR AR AR AR bR bR en 136
SEEK cvuurverrerereretssssssssssssssssss s s s st e b et R AR AR R AR AR R AR R A AR AR b e Rt n R b en 136

Bttt ettt bbb AR bbb bR AR b s bR s R s bRt st e en 136
WWETE vuteueesieeteeessstesassassss st asssssssssssassss st assssassasssntensssasssnasssssesssssstsssessassssessasasssssesssssssasssssssassasansensasassessssssssssessassssssnses 137
WHTEEIN ettt sess sttt sass bbb s s b e e s s A st b s A e e a R R b ase bt bbbt s et s ses st assessansanen 137
FOIART ODJECE ouueeeieireirereiiseiseiseseisssisssssesssssssssssasssssessssssssssassssssssssssssssssssssssssssassssssssasssssssssssssssssssassssssssssssssssssssssssssssassssass 138
FOIAET ODJECT CONSTIUCLOIS....uruererrisrrisrersissssssessissssssssssssssssssssssssssssssssassassssssssssssasssssasns 138
FOIAET Class PrOPEITIESuvueererreerirsrssissiissess e ssassssssssssssssessassssssssssasssssasssnnes 138
APPDATA .t etk Rt e et s 138
COMMIONFIIES ..ottt st ss s b s s bbb as s s s bbb e s s baseans bbb es s st sassasssessessentessans 138
CUITENT cocvrecerieeceresesessesesseesesssssssssssssssssssssssessessssssssssssssssssssssssssssssesssssssssssssessssesssesssssassssnss 138

£ ettt et A AR AR bR e A SRR AR bR bR AR ARt bbb R s bR s R s st e en 138
MYDOCUMENTS ..ottt sesssssessasetssessesssssesssssessssssass sttt ass s st ss st b bbb b bast st bbbt bnses 138
STAITUD eeeeueeeueurieeirte ettt ettt st bbbttt s e b s bttt E bRt R et ettt a st stn 138
SYSTRIM ettt esseses s sse s sss s s saseas s s assas s s e a s es st ss e e AR E s AR R s ARt AR R R s R A s e Rt AR Rt s e st asesesneasen 139
TEIMIP sttt ssesesssssssssssessssessesssssssssssesssssssssssssssssssssssssssssssssssssesssssssssseses 139
TSI ottt ses s s s ss s s s RE e RS SRR R AR R R R Rt 139
USEIDATA c..ereeeecreerererteisestsessessisssssssesstssssesstsssssssesssssssessssssssssesssssssasssssssassesstesssssssssssessssstsssssasssssssasssssesssssssssssassnsss 139
FOIAEN Class fUNCLIONSvuvvreerrieressrnsisstsssss s sssessasssssssssssssssssassssssssssssasssssssons 139
AECOUE ..ttt s s st s b s st s s b s AR b bR bR bR bbb R bbb A e e bRt s R bt en 139

= g Telo o [T P OO OT TP 139
ISENCOAINGAVAIIADIE ...ttt ess et esse s s ssssesssesasesssesssessssessasesssessssssans 139

Adobe Creative Suite 2

Bridge JavaScript Reference 1
SEIECIDIAIOG vttt sssb st s s b s ses s b s s bR bR bR e AR bR bRt n R e en 140

FOIUET ODJECE PrOPEITIES ...cuevrrerierersrrrsissstsssssissassssssasssassesssasns 140
ADSOIUTEURI ...t iseiseissssssasssssesssetsssssssssessssssssssssssssssssssssssssssssasssasssssssssssssssssssssssssssssssessssssssssssssasssssssssssss 140

AlTAS vttt R SRR RS sER R HR R R RS R R R R b0 140
CLEATEM ettt sssessss b st sssebsss s s b s s s RS se bR R SRR R R RS bRkt 0n 140

EITOF cuicerieueteteeuees et sas e s et et se sttt et s st e e s sttt e s Eae s et Rt st E sttt sttt A bt s et b et b e st tas 140

EXISTS currururrerreensistseusissstsesstssssastastssssssessssssssassssssssssassssssssssasssstssssssssssstassesssssstassstastessseasssnses s et et A et e R et st Rsaaeen 140

TSN QIMIE .ottt s st ssss bt ass b s bbb s b s s A et e AR bR E s A E bR bR bR nn R e st Ren bt 140
g0 o 111 T=Tc DD P PSPPSR 140
AINE.c.eereeeereureeeresseessessessesssseasessssessessassssessessssessessasssseasessssensessessssessessssesstsssssssastsssessessssssessesessssessssssensesessensesesssssens 140
PATENT...cveeerrireerriirresestsessasessessessssssssess 140

PALN et b s b R R e AR AR AR AR AR bR bR b n R baes 140
FERIALIVEURI ...ttt sbas s s s s s b sss s s bt s s s s s s e sas s b es bRt ban et sssesbasssansasns 140

FOIAET ODJECE FUNCLIONS cc.eceeerieteersrise sttt st sssssssssssssssassssssssssssssesssssssssssssassssssssssasssessassssssssssassssssassnnes 141

Ll (=T 1 (<P 141
EXECULE ..ttt ettt sttt s bt a st s bbbt SR s b bbb s bR bbbt bbbt 141
GEIFIIES oottt ssesss s ssessss s ssssbsssssesssassssssssssassssssssssassssssssssssssssssssesssasssssssssssssessssssssssesssassssssesns 141
JELREIALIVEURI ...ttt sss s st sssssessssssassssssssssssssssses s s s s s e sssssasssnssassasessssanssanees 141
FEIMOVE ...ttt st st et as st s st st s s et e st ae s bt s s bt s et taess bt e s sttt et e b s st tas bt s st et s sntssassstn 141
FEINAIMNE. ..ttt st e st s et ss st e bt s s et e st st s s bt st e st b s bt b sttt et s s bt s s st st as st s st s as st stassstn 141
FESOIVE cuuverereerreisseseisessssississessessassssssesasssssssssssssssssssssessssssssssesssassssssessssssssssessssssessses 141
SEIECIDIG oeuveeeeereirerinsisseissississssss st sssessssssssssssssssssssssssssasssssssssssssssssssesssssssassssssessssssasssessssssssssesssessssssssssassssasasesess 142

File @aNd FOIAET EFTOr IMESSAJEScuueeueemseemseesseersserseessesasesssesssessasesssessssssssssssssssssssssessssssssssssssessssssssesssssssessasesssesssessssssass 143
File and Folder SUpported ENCOAING NAMESvviivrrnrinrrsinsinsssssssisssassens 144
AdItIONAI ENCOAINGS ..ottt sssssssssssssssssssssass s ssssssssssssessssssssssasssssssssssssssssasssasssssssssans 144

8 ScriptUl Object Referenceccccccerccccenicssensrcssnsecsssssecsnssssssnssesanns .146
OVEIVIBW .ecrteeseeerstresisesestssssssssstssss s tsssssssssssssesssssssssssssssasssssssassesssssssassessssasssssssassasssssssssssssssessesssssstessssssssssssssassesssssssessasans 146
WINAOW ClASS .uururiererernsiisinsesseissosssssssssssssssssssssssssssssssssssssasssssssssssssessons 147
WINAOW ClaSS PIOPEITIES ..vureerierererrnsiensissssssissans 147
COTERVRISION c.ueieereerenrieesessessseastsssssesssssssssssssssssssssssssssssasssssssssssssssssssssossssasssssossssassssssssssessssasssassssssssssssssssssssssssssssss 147
VEISTON ceeerieriererinceessississssssisssssssssssssssssssassssssssssssssssssasssssssassssssssssasssssssassssssssssssssssssssesssns 147
WINAOW ClaSS FUNCHIONS c..eoeeeeerrcresrenseesstssmsssssssssssssssssssssasssssssssssssssssssssssssssssssssssssnss 147
ALEIT ettt s s bbb SRR RS R R s RS R SRR R RS R R0 0n 147
CONTIIMN ottt b s bbb s b s s s b e bbb s e b bR bbb R AR ba s bR A b At bR bt bR et bat b 147

I ettt st bbb s bbb bbb R AR bbb bRt bt s R ARt Rt en 147
GEOTRESOUICETEXE ...eeuieerierieericissiseesesissssissseassssesssssasessssssssssssssssassasssssssssssssssssassessssssssssses 148
PrOMPT ettt sttt st s st et s e st s st sttt s sttt s s s bt s s st st as st s st s assststassntn 148
WINAOW ODJECT .cueveereiiiseeiseisiisissssissssssssssssssssssssssessssssssssssssassssssssssessssssssassssssssesssssss assssssssssssssssssssssessssssssssssssssssssssssssssess 148
WINAOW ODJECT CONSTIUCTON «.cuevererierereeiseiseisssississsissessesssessssssssssissass 148
WiINAOW ODJECT PrOPEITIES .c.eueererrinreerersseissiseississssssssssssssssssssssssssssssssssssssasssassssass 149
AEFAUREIEMENT ...ttt bbb s b st ass s s b st R bbb e st asn b s s baeen 149
CANCEIEIEMENT ...ttt s st s s s s s s s s s bt a s bbbt bbb a s s b st Rt s s baeen 149
FrAMEBOUNGS ..ottt sttt sass s sasssssses st sss s ssss s s s sass st s et b s Rt s s e sbsen s bas st asnbensans 149
FTAMELOCATION. ...ttt asss s s sss s s s s sssassses st s s s s s s s R sa s s s s s s snsssssssseses 149
frameSize............ cererese e aene 149
Container properties......cceeerennen. ettt st s st s s tassenanen 150
ALIGNCNIIAIEN ottt s bbb b s s s e st bbbt Rt s e baenn 150
CRUIATEIN ettt st bt ass s bR b ase bR e e e bRt Rt bR ettt as 150

JQYOUL .ot tsstsssess st s s s sass s ssssesssssbssssss s s s assbsas s e s s s e s s st s base s e s b s e e e bt asn b s anbesnssnsssbanssnnsanns 150

INMAEGINS oveeeereerereserssessesesssssesssssesssssssasessesssssssssssssssesssasesssssessssssssssasssssssesssssessssssssssssssssasssssasssssasssssasesssassssssssssessssassessas 150

Adobe Creative Suite 2

Bridge JavaScript Reference 12
OFIENTATION ..ttt st sse s e st asssssss s s s asa s ssst st s b s s st s et asassssessnssbsssstasbassssasassssssssassssssasen 151
SPACING wvuvereeerrsresinrisssssssesssssssessasssssssesssssssssssssssssssasssssssssssssssssssssssssssssasssssssssssssessssassssassessssassssssssssssssssssssessssssssssssssns 151

WINAOW ODJECE FUNCLIONS c....eeoreerreeeeseereesetresessssessessassssssssssssssssssssssssssssnes 151
= T Lo [T P RO U OO 151
La(=] 01 (=] PPN 151
ClOS ettt s st R e R AR AR AR AR AR AR AR AR e en 151
R ettt et bR b bbb AR AR ba e AR R R At e 152
NMOTITY ottt sttt ettt bbb st bbb bbbttt 152
FEIMIOVE..c.cucereureeereaseeressessesessessessssessessessssessessssessessessssessessssessessessssessessssessesssssssasessssessessssssssssesssssnsesesssssensesessensesesssssens 152
SPOW .ottt ssssssss s s ssssssesssassssssssssassssssssssssssssssssssssssssassssssssssessssssssssssssssssssssssssssesssssssssssssassssssesssess 152

Window event-handling CAIIDACKSoenieieseiiseseissssissssssssssesssns 152
ONCIOSE ettt s bbb st ass s s bR A bR SRR s AR ARt A et R e b bRt an s 152
ONIMOVEceeriererensieesesissasssissssssessssssssssssssssssasassssssssssssssssssssssssssesssssassssssssessssassssasssssssssssssssasssssssssasssssssasssssssses 152
ONIMOVING c.ceireriririeasesisesesissssesssasssssssssssssassssssssssesssssssssssssssasssssssssssssssssssssssssssssssssss 152
ONRESIZE c.uceeerrerresereietsisessesessssesss st sssssssasesssssssssssssessssssssssssssssssssssssassassassssssssssssssssesssssssasesssssesssssesssssssssasssssanes 152
ONRESIZING werevereerrrersensensisseissssesssessesessessessesssssssssssssssesssssessssssssssssssssssssssasssassssssssssssssssnsons 153
ONSNOW ittt ssssssssssssssssssssssssssssssssssssessssssssssassessssssssssesssssssses 153

CONTIOI ODJECES oureevrrersirrissstsssssisssesstsssassssssssssassssssssssasssssssssssssessssssssssssassssssesssssssens 154
CONLIOl ODJECT CONSTIUCTONS ..vurereertrresisressisstsssasssssstsssassasssssssssssssssssssssssssensssssssssssssssasses 154
QUG e e e e R bR bbb AR bbb AR bbb e s R bR R s s tenaens 154
Control types and CreatioN PAramMELEIS...... i eeerseisssssesssns 154
DUTEON oottt asssssessssssssssssssasssssssssssssassssssssssssssessssssesssssssssssssssssessssssssssesssassssssssssesssssssssssssesssns 154
CRECKDOX ... ceierieeirisineiseissiseisssiss s isssassssssssssesssssssssssssasssessssssssssessssssssssssssassssssessssss 154
ArOPAOWNIISE cuucveeteriererstssiss st tssssss s sssstsssssssssstesssasssssssssssssssssasssssssssssnsssssssnssssasssanses 155
EUITEEXE cuvreerrrerrestssstsssssssssssssssssssssssassssssssssasssessssssasssessassssssssssssssassssssssssessssssssssassssssassssssasssessssssssssssasssasssssasssessansens 155
GEOUP cureuiuiiueneeueeriessiensastessastesstsssstetassstss st s st asssestassstetasssesssststassstesassstaststassssatesassstassstassssstassssstassstsssssstassssssassssncas 156
TCONDUTION «.coerririscseiseissssesssessssssssssssesssssssessssssessssssssssesssssssssssssssssasssssssssssssssssssssssssssssssssssesssassssssssssasssssssssssss 156
IMNAGE ceceeeeeeererereeesesessesesessesessssessessasessessasessessessassssessessssesstssessssesstssssessessessessssesssseasessssssessesessnsesssssasensesessensesesssasens 156
TEIM ettt sttt e esssssesss s ssss s ssssssessessesssssssssssssasassessessessssssssssssessesssssesssasesssssesssssstsssassassasssssssasssssssssnns 156
[ISEDOX cuurrerrerresrensissssssssssss st sssssss s ssssass s sbssssss s ssss e b sss s e s s s e s s se e R A bR e bR bR bRt n R b n R bans 157
PANEL ettt st s s s R AR RS AR AR A AR R bR bR n R b n R taes 157
PIOGIESSDAN ..urueterreerrererssissssesisssssasssssssssssssssssssssssesssssssssssssssssassssssssssassssssssssassssssssssessassssssssssssssessassssssassssssansessasns 157
FAQIODUTION c.ueevetrerreereeeissieseissesssessisssssessssssssssssssssssssssssssssessssssssssesssassssssesssssssssssssssssessssssssssssssassssssssssesssssssssssssesssns 158
SCIONIDAN ettt sesss s sse st sss st ssssesssssss s bss st ssa bR RS bR RS sk R ARt e bbb os 158
SHABT ettt sssessss s ssssssssssssssessssssesssassssssassss s sssesssassssssasssas s s ssa b e sssasssssssbssassesssasssassssssassssssessness 159
STATICTEXT ettt sttt ssa st ss st s st ssssassass s e st ssssess et se s s e s b st sa e et sn st ssssnssasstasssnsssassenatan 159

CONTIOl ODJECE PrOPEITIES ...ttt st s s s sssbssssss s sssssbass s bss s sass st assbens b sasnsnsssssanees 160
ACTIV ettt sessse st sssssssassssssssssassss s s e s s sasesssssasass s s s as AR s R bR b R At R s Rt E AR E R et R e b R a e en 160
AIIGNIMENT ..ttt sss s s sss st s s s s Ess s RS bR R R bR RS eb s s s st bseas 160
DOUNGS .ot ssss s st ssssssssssas s bssassasssa s sssesssa b s ssabss s ssss e assesssassssssesssessssssessssssesssns 160
ENADIEA .ottt ettt bR R R AR AR R bRttt 160
P P TID et rssisssssssss s st s sass s b sssbass s s b a s b s e s bRt e bAs bt ae e bR R bt aen bRt n s e s R bans 160
TCONM ettt a s st s s e s s st s s st s s sse s b s R e s s R RS Ese bR s E st AR st E s R e b s s e R e st e st st snaneais 161
INAEX cevrerrrrreeessesesssessssssesssessassssssssssessssssssassssssssssssssssssssssessssssssssesssassssssesssssssssssssssssessses 161
TEEIMIS ceeeeeeueeeereseeesenesseas e esseasesssessessesssse s ssesse s se s ss s s ss st s s st st s e s st e st e ettt asesse e st anesesstasens 161
TERIMSIZE coueeeereiresreresseee st ssss st ssse s sasesse s st sssss s sessassssesssssssssbassssassasssssassssssssssasssesastsssasesssssesssssssssssssassansans 161
JUMPAEBIA c.ererveresiesissessisstssssesssssssss s ssssssssssssssssssssssass s sssssssssesssessssssssssssssssssssssssassssssssssssssassssssssssensssssassssssassanses 161
JUSTITY ottt ettt siss bbb bbb s s sttt e s ettt 161
[OCALION coutererisrtse sttt st b sss s e s s ass b s st s bbb e R A SRR R et et asn e bR bRt sasn bt enen 161
MAXVAIUE «.oorereierereinssisseesessseisssssssesssssssssssssssssssssssssssssssssssssssassssssssssassssssssssssssssssssssssssasssesssns 161
MNINVAIUE ccvoeieeereisrisseesessseisssassssssssssessssssssssssssssssssssssssssssssasssssssssssssssssssssssssssssssssssssssns 162

Adobe Creative Suite 2

Bridge JavaScript Reference 13
PAIENT ...ttt ettt ss s st ss st st s s et e st sttt R sttt E Attt s et stn 162
PIEFEITEASIZE .ottt st s s st sss s s b s s s s s s s e bR s ass e bRt saes et ssssbanssantans 162
PIOPEITIES ..cveveererreeseissstsesestssastassssssssesssssssssssassssssssssssssssssessssssssasssssssasasssssessssassssssssssassssessassesssssssesssssassssessssassessases 162
SEIECTEM ..ttt s st ss bR SRR SRR R R R RS AR R0 162
SEIRCTION eveveveeeeneieseiseesesse st ssss s s s ssssebsss s s s s s asa bR s R AR s SRR R RS RS AR bR bsaRsebetbos 162
SIZE wveerrrrtresieetsests sttt st R s eSS R s RS s RER R s AR et R s E s Rt E R e Rt a et enaneas 162
SEEPUEITA ettt ssss s s s s b s e s s R bR R b E R s bR bR bR bRt n R e en 162
TEOXT ettt ettt et e s ettt R bRttt a bRttt a ettt s et aa 163
TEXESEIECTION ottt assssse s s s s st asssass s R e R s s bR ARt e san s bea b st sass 163
L1377 01O 163
VAIUB oottt sssssssssssssssssssssessssssssssssssssssssssssssssessssssssssesssssessssssssssssssssssssssesssassssssssssasssssssssssssessssssssssssssnssssess 163
VAIUE oottt s ssss b s sssssasssssssssbsss s sasssessssssass s ssssssss s sssssassssssses ssssssasssessssssasssensanssanssssssessanssnsssnsessans 163
VISTDIE ettt s sssssss b sssssssssssses s b sss st sssssssssssass s st s s bass e RS ase e tb R s R bR nn s e st Rn bt ens 163

CONLIOl OBJECE FUNCHIONS ...ttt s sss st ssssssssassssssssssss s sssssssssssasssssssasssssssssssssasssssssssssassssssanees 164
A et AR R SRS RS R R R R R0 164
FIN oottt s s s st RS s e RRRSER RS EReSEREReER RS Rt R et 164
R et sss s s s R SRR RS RS R R R R RR AR bR 164
YOI ottt sttt ta st bttt st b b bbbkttt 164
FEIMOVE ...ttt st et a st a st s st s s et e st bt s s bt s s e st et s st b sttt ettt as s st st as st s st et assntseassntn 164
FEMOVEAIL ...ttt e s s b sss b ssssss s s s s s bt ass e e s R b s s e e bt s bRt baenbesn b s s banssantasns 164
SPOW .ottt st ssssssssssesssassssssssssesssssssssssssssssssssassesssassssssssssessssssssssssssasssssssssssssesssessssssssssassssssessssss 164
TOSTIING eeeeeieereicieiseisesseisssseissisessesseasesseassssesssssssasessessesssasasssssssssaasassessasssssesesssesessssssssssssssasssssasesssssessesssssssesssssassrsses 165
VAIUBO ..ottt sssssssssssss s s sss s s s s s s s s s sas st a Rt s RS s R b s ssnsans 165

Control event-handling CAlIDACKS ...t sessasees 165
ONCIICK ottt b s sassbess b sss s s s bass s s bbb bR bR bRt bbb asn s bt asn b s asnbeeen 165
ONCNANGE ..ttt st b st s s s bbb E SRR bR e R s AR A e s bt Rt s R beeen 165
ONCNANGING ettt ssssssssssssssessssssssssssssssssssssssssssassssssssssessssssssssssssssssssssssssssessssssssssssssasssssssssssss 165

SiZE ANA LOCATION ODJECES c.uvurrereeeeeressineissenssissssssessasssssssssssssssssssssssssssssssssens 166
BOUNGScoererieeinriisseiseeseisssnsesssssssssssssssssessssssssssssssssssssssssssssassssssssssessssssssssesssasssssssssssssesssssssssssssssssssssssssasssssssssssssessns 166
DIMENSION .ttt s sstssssesstssssesstsssssssesstssssesssssssssssssasssssssasssssssssstsssssssssssssssessassssssssssssssses 166
IVLAEGINS c.etreirienricisstseasisiseasissssasssesssssast s sssssesstssssssssssssssssasassssssssssssssssassssssssssssssssssasssssssassssassssssssssssssssssssasssssssssssns 167
POINT ettt sse e st s sssssesassssa e sssssssssasssssstsstssssasesssssassssnssessssssssssssssssssssssssssssssssssssssns 167
LaAYOULMANAGET ODJECT ..cuvvevirrieeereiseiseisessseissssissesssssssssssssssssessasssssssssssssssssssssssssssssssssess 168

AutoLayoutManager ODJECT CONSTIUCTONiirrerererisssass 168

AutoLayoutManager ODJECT PrOPEITIEScvririirereississssssessssissssssasssass 168

AutoLayoutManager ODJECE fUNCLIONS ...t tistiseiasessssetasessssssssssssesassssssesssessssssssessssssssssssssssesasess 168
JQYOUL .ot tssessssss st sss s s sssssssssssasssssbssssssbss s sassbsss s e b s s s e s s esbese s e e b as e e bR sn b b anbesntasnsesbanssansasns 168

MENUEIEMENT ODJECT ...ttt ssssssssssssessssssssssessssssassssssssssassssssssssessssssssssassssssassssssssssassssssssnsessans 169

MENUEIEMENT CIaSS fUNCHIONS.......vvererrrrrrereessseesssessesesssssessssssssssssssssssssssssssssssssssassseses 169
CPEATE .ottt ee st as s a e s st a s ses st a s s st Rt E s R s R R R ARt R R s R AR AR AR R AR Rt en 169
FINA et s et s AR R AR R AR AR AR e R R bt 170
FEIMOVE ...ttt ettt st ettt a st s bt s s e st e st b e s bt st s st b sttt et s s bbbt as st s st s s sstseassstn 170

Creating NEW MENU EIEIMENTS.......ccecerrrrrrinsisssasssssssessassssssassssssasns 170

MENUEIEMENT ODJECT PIOPEITIES ..uuverevereerinreererissieseisesseissessssssessssssssssssssssssssssssssssessssssssssssssssssssssssssssssssassssssssssssssssns 171
AIEDIOWN ...ttt ssssssessssbssassssssessssssssssassse s sssessssssesssasssassss s s s s sssa e s st sesassasssesssassssssesssasssses 171
CRECKEM ottt sssss st st sassasssssassssbsssssesssassss st ssassss s s s sssa s sss s sesassasssessssasasssesssssssses 171
CIMUADOWN ..ttt tesssssssss s ssssssssssssssssssssssssssass s sssssssssesssssssssssssssssssssssssessassssssssssssssasssssssssssnsssssassssssasssanses 171
CLIIDOWNN ettt tsssessssss s s sssssssssss st ssssass s e s b e s et R e e b R st R e st R s e b s e s bt Rt s snbaeen 171
ENADIEA .ot st b s s bbb R AR R bR AR R b R bRt 171
T ettt ss st st s RS s R R R R SRR AR R RS AR SRR SRR AR b0 172

ONDISPIAY cevverrerrireererisinseieeiseissssssssesssesssessssssssssesssassssssasssassssssssssessssssssssssssasssssssssssss 172

Adobe Creative Suite 2

Bridge JavaScript Reference 14
OPTIONDOWN ...cceiincieereeieasisississasesssssstssssssssssssssssssssssssssssssssssssssasssssssasssssssssssssassossssssssssssasssssssassssssssssassesssssssssasss 172
ONSEIECT vttt e sass st s s s s s A ba s bR AR bR R bR R AR R s bR R bRt 172
SNUTEDOWN c.coerieerceercenscesesisessssessssessssessssesssssessssssssssesssse s ssse s s s sa s b s Rs RS R bt s s e 172
L= 4 172
L1377 01O 172

Bridge menu and cOmMMANd IdENTIFIEIS ...t sssisssssssssesssens 172
BriAge MENU IAENTIFIEIS c.cveuererreertrerrstssssiseessstsssssssssisssssssssass s sessssssssssssssssssssssssssssasssssssssssssssssssssssssssasssssssssassens 172
Bridge submenu and command identifiers 173

9 Interapplication Communication With SCrPtScccccvnnrieiiiiciiiissssnnnnnnnneeccsccsssssnnssssssssccccses 180

CrOSS-DOM FUNCHIONS ..c.oreeermncnennemeeseassenseesssssesessssessessesssesssessesssesssessssssesssssssessssssessesssessssssesssessssssssssessesssssassssesssessesass 181
CrOSS-DOM API REFEIENCE ...cuueerietireisetiseiseesetesetissessset st sssesssssbs s bss st bbbt bbb it b st b st et basebasas 181
EXECULTESCIIPT curereeererieererieesesisisssessssssstssesssssssssssssssassosssssssssssassssasssssesssssssassssssssssesssss 181
OPIEIN ettt ettt st sttt e st bR s E SRRttt A et S et ee bbbt n e tas 181
OPENASNEW ...veteereerectseisisassesssssssssssstssassassessssassassessssassessssssessssassesssssssesssssssassesssssssesaass 182
PIINT ottt iestsss s sssstssssssssstsssssssssssssssssssssessasesssssssessssssssassssssassssassessssasssssssssesssssasessessssessesssssssassessssessessases 182
QUIT eeeerieeereeerseseessesesssessssesessesssssssssssssssssssssssessssssessesessssssssssssssssssesssssssssssssessssessssessssssssssnss 182
FEVEAL.ccuieuiutieseiesesesesisetasetiss it tis s asse st bse st s s st s s s R b AR ARkttt 182
Application-SPecific EXPOITEA FUNCLIONSc.cveerrreeericnrinsinsissassssssasns 182
Communicating Through INterapplicCation MESSAGEScvrrernsinnrmnsinnsiesssnssnsississssssssssssssssssssssssssssssssssssssens 184

SENAING MESSAGES ..vuvrerreererrreieisseesessssssssisssssesssesses 184

RECEIVING MESSAGES ...euverreirreinrersiserssesesssssesssssssssessessessssssssssssssssssesssssessssssssssssssssssssssssssssassssssssssssssssssassssssssssssssssssssenss 186

HaNdliNg UNSOIICITEA MESSAGESuuereeureemecmneeseeseeesseasessassessesssessssesssessssssssesssessssssssesssessssssssesssessssssssessssssasssssesss 186

Handling responses from the MESSAgE target ... sssasssnss 187

Passing values DetWeEN apPlICAtIONS ...t ssns 190
PASSING SIMPIE TYPES ouueereeeeeeetireeisecistiseise sttt bssesssse b sssesssssbss et s b s base st b st b st b s bssasas 190
PaSSING COMPIEX TYPES euverevrrerinresserssisseisessesasssssssssssssssssssssssessssssssssssssssssssssssssssessssssssssssssssssssssssssssasssssssssssssssssssess 191

Interapplication MesSage APl REFEIENCErcrrrirrrseesssessasssssssssssns 193
BIIAGETAIK CIASS .uuverrerrnrereeisenseessesssissessessssssssssssesssassssssssssssssssns 193
BriAgETalK Class PrOPEITIESccvrerierirsrnsinsissensisssissasssssssssssssssssssssssssssassens 193
APPLOCAIE sttt s s s s s s st a s bR R R AR bR AR AR AR R bR e en 193
APPNAME ..ttt asesses s st st s st s s s s s s s sas st st s st st asssstssssesssssssasssssssessassbsssssasssssssssssssssssassssssanen 193
QAPPVEISION cacercteseesisirestssassstssssssssssssssssassssssssssassssssssssessssssssssessssssssssssssssssessssssssssssssssessssassessssassesssssssassessasessessass 193
ONRECEIVE ..eceeeereericinseseasesseasesssssesssssssssessesssasesssssesssssssssessssssssesssssssssssssasssssassssssssssssssssssasessssssssssssssssasssssssasssssssssssns 194
BridgeTalk Class fUNCLIONSccuceueereeeneeieeesesssensssessssessssessssesssssssssesssssssssessssesssssessssessssssssssssssessasssssssssaens 194
DIINGTOFTONT ..ottt s sssssss s st ssssbsss b sass s s s s s b s s ess b s st s s s sess b s asn s as e sasssssanssassasns 194
JOUSP OGN ettt st bss s s s s b s e bass s e s s s R RS s Ass e A bRt bbb a e b st Rt s s baeen 194
GOITANGELS ettt st st a s st st as st s s s s st s st o a st se b s st as s st st st st asassssssssassssssanen 195
ISRUNNING cottiiricieenseiseeseissisessssssssessessessesssssesssssssssesssssesssssassssssssssssssssssssssssasssssssssssssssssssassssssssssssassassasssssssasssssssssssns 196
JAUNCR oottt sss st st sssssssssses s s ssesssa s sasessse b s s sssssses s sesassasssassssssesssesssssssssssssesssns 196
PUMP c.vierreererineesnstsessssesssesssssssssssssssssssssssssessssssssssssssssssessssssessss 196

BridgeTalk MESSAgE ODJECT......vveierrirerrsrssissensisssassssssasns 197
BridgeTalk message ODJECT CONSTIUCLON ...irerneienrissserssnsissens 197
BridgeTalk Message ODJECT PrOPEITIESccrrrcrrnsinrisnsissssnsissens 197

DOAY et ssas s s s s A s RS R s RS RS R s R AR RR AR bR 197
PEATENS ..ottt esss bR s s R R RS RS RR SRR 197
SENET «.ouveeureruerueeseesssessseessseesssesseasassesse s s s es s b as e st s s R R RS R e R R 197
BATGOT ettt ettt sttt R et bttt a bt a et s et na 198
BIMEOUL .ttt bbb s s bbb bbbt b s bbb bes 198
117/ 01O 198
BridgeTalk message ODJECT CAlIDACKSc.erererrininniireiseisisesssisssissssssssessess 198

Adobe Creative Suite 2

Bridge JavaScript Reference 15
ONEITON ettt sttt s s ettt m bttt 198
ONRECERIVE ..ttt s s as s bbb bttt R st bbb ettt 199
ONRESUIT .cerveeeeeeereississeeresseissssessssssssssssssssssssssssssssssssassssssssssessssssssssessssssassssssssssessssssssssasssssssssssssssssessssssssssesssssssasssns 199

BridgeTalk message ODJECE FUNCLIONSc.veeeveerieriierieessesessenmsssesssessssessssesssssessssessssssssssssssesssssssssesssasess 199
SEINA cervereieeirreeeessessesssessssssessssissssssssss s s st s S s e R s AR RsRsR S RS seERRE SR SRR R SRR R RS R R R R0 199
SENARESUIT .ottt sttt bs st b st bbbt b bbbttt 200

MESSAGING EFTOI COUES w..uuvurierrrerersiensisssrsssasssssssssssssssssassssssssssssssssassssnes 201
Sample WOrkflow AULOMALION SCHPLS ...ceicernrrrrrssissensisssassssssssssens 202
10 ExtendScript TOOIS and FEAtUreS........ccccciciccrcrnnnnnnnneccccssssssssnsssnssscecscssssssssssssssnssssssssssssssennes 203
The EXTENASCIPT TOOIKIT.....cceeeeeeeeteeteetse et tessstssessassassassasssss s ssssassassassass st essessssassassssssessessssssssssassassasssnsssssssseas 203
Configuring the TOOIKIT WINAOWucicerrisrisnesssnsissississississasssssssssssssssssnsssssssssassssssasses 204
Selecting @ AEDUGGING TAIGET ...ttt sssssssassssssssssssssssssssssssasssessassssssasssensssssssssassssssanees 205
SEIBCLING SCIIPES rurrrrtreriesrersississsesssssstsssassssssssssssssssssssssstsssassbessssssssssassssssssnsssssssssssssssssssssssssssessssssansssssssssensssssssssassassanses 206
TrACKING AALA ..t sssissssssssssssssssssesssssssssssssessssssssssssssassssasesssessssssssssssssssssssssssasssessssssssssesssssssssssssesssns 206
THE JAVASCIIPT CONSOIE sttt ass s s bbb s ass s s s st ass s s bbb b s s bbbt st sasbassassassansansanes 207
THE CAIISTACK ettt sssisssssssss s s st sssasssasssssssssssssesssssssssssssssssssssssssassssssasssassssssssssesssssssssssssasssns 208
THE SCHIPT EAITON cuurtrieteercesetss sttt sssss st sss st sssssssssssssssassbsssasssessbesssssassssssasssassssssasssssssssssssassssssansasssaons 209

Mouse NAVIGALION AN SEIECTION ...ttt ssss s s sssssssssssssssssssssssssssssassssssesssssssns 209

Keyboard Navigation and SEIECHION ...ttt sassssasssasss i sasessssssasessssssssssssesas 209

SYNTAX CNECKING wverieitreieeirineisseisisseessessessssissssssssssssssssssssssssssssssssssssssassssssssssssssssssssssssesssssssssssssssssssssssssassssssssssssssssns 210

DEbUGGING IN ThE TOOIKIT......ceueeeeereireereeesseessetmsseeseesetesssessessassesseesssesssesssessasesasesssessssssssessssssasesssesssessssssssessssssssssssesas 210

EVAIUQTION IN NEIP TIPS..uurierrierririienseiniissississsissassssssssssssssssssssss 210

Controlling code execution .210

Visual iNdication Of EXECULION STATESc.vvvureureereeesetesetieeiseeseeasstisesssssisssissssssesissssssessssssssssssssssassssssasssasesssess 211

SEHING DIEAKIPOINTS .ecvvureerereerssisrisssss st ssssessssssssssssssssssssssssssssssssssssassssssassssssass esssssssssssssasssssssssasssessasssanes 212

PPOTIING couretererereeereeeseessesssessstss st sssssssssssssssessssessssssssssssssssssssssssssssssssssssssassssssssasssassssssssssssasssssssssssssssssssssasssssssssssseses 213
DOHIAT (S) ODJECL curveueereereeereerressseesssssssessassssasssssssssssssssasssssssasssssssssssns 215
DOIIAr (S) ODJECT PIrOPEITIES ..oucveurerunscreseesseriseesmsesissessssesssssessssesssssessssessssesssssessssessssessssesssssessasessssessssssssssessssssssssssssess 215
DUI ettt sttt st bbb Rkttt 215
DUIADALE «.cuceeeeeceeete sttt b st b sssess st st bsse s s e s b bbbttt 215

1<] OO 215
FlagS cerreerreereeeeressiss st ss st s s s Rs eSS R RS R RS R R R AR R Rt 215
GIODAL e s RS R RRRRRRR RS ee0n 215
[EVEL.cu e eteeeeeetieeeasetsees e eassessaseesse s s ses b s s a s R AR R SRRt 215
LOCAIE oottt ettt AR bbbttt 215
[OCAIIZE ettt ettt bbb e R ekttt 216
INEIMCACKHE ..ottt sttt st bbb st b bbb skttt sttt 216
ODJECLS couveererrerueeseemseesseessetass e asa s s s st s b et bbb s R R Rt 216

L LR 216
SCIREINS ceereureecereusesesseasessassssessasssseasassesssseasesssseasessssssstasasssstassssssssstasssssstasssssstastassessstassessssssssesssasssssstassssssastassssssassssssesses 216
SEEICT ettt as s bbb s bR s bbb Rttt 216
VEISION woeteretitereicesisestssesssssesssssetss s ssse st ssebestss st st s st st bas st sttt A s bR bbbt bbbttt s b eeen 216
DOlIAr (S) ODJECT FUNCHIONS ..ottt s st ssssssssssssssssssss s ssssssssssessssssssessbass e sssnssasssssnssanssanssns 216
BDOUL ettt csa s ess s s st s s RRRRRRaaR e 216

D ottt R s SRR SRS RS R AR AR R bR 216

Ll =T o] o OO P TP 216

GO ettt ettt sttt ettt bRt e ARt SRt bRt st At RSt ee bbbt s e tas 216
TNV ettt ettt et st st sttt E sttt A bt S et ee bbbt s e tas 216

[T cvvurrerreeseesssessessssssssssssssssassssssssssssssssssssassssssssssesssssssessesesssasnsess s sesnssasses e s s e s R bR SR AR R s R bRt n R e e R baes 216
SETDP ettt s s sRs RRRER s R RS bee0n 217

Adobe Creative Suite 2

Bridge JavaScript Reference 16
SIEEP wevereereretsrrs s tsss it sttt st R R s AR AR R AR bR R e AR R AR R R bR et en 217
SUMIMATY worieirimineiesisisssessissssssississssssissssssissssssssssissssssstssssssesssessssssstsssssssssstssssssssssssssstssssstsssessssssssssssssssssssssssssssssssss 217
WWETT@ ueeunrueesrasessesssesssssesssssesssssesssssssasessssssssessssssssstsssasessessesssssssssssssssessasssssesssssssssssssessasssssasssssssssssssssssasssnsssssssssesssssssnss 217
WIETTEIN ottt sssse s st sssssssssssssssssssssssssssssassssssessssssssssassssssassssssesssassssssesssessessssssssssessssssssssssssnssssess 217

ODJECE STATISTICS w.vurrverreereerersseisrsseiseissssssessssssssssissesssssssssssssssssassssssssssessssssssssesssasssssssssssssesssns 217
EXtendSCript REfIECION INTEITACE ...ttt s sss s ssss s sasssss s sess s sssssbasssss s sss s sassssssssnsensans 219
REFIECHION OIJECT ...ttt tsssss e ss st s s ssssssssssssssssssasssssssssssss s s st assssssasssassssssasnsessasssssssassasssassssssns 219
Reflection object properties .219
AESCIIPLION oottt s b s s s s b s s e a s s s st s b s s et A s s as e A s s b s es s b st sassansasssnssestassans 219
NI ettt st st AR AR AR AR AR AR R e bbb e s AR ARt tan 219
IMNETNOAS ..ot sssssssbsssssssssessssssssssssssssss s s s ssssessssssssssesssassssasesssassssasessssssessssssssssessssssssasesnaes 219
AN, ..ttt as et sess s stse st s s e st ss st ae bt s s e st e st e s bt as s s a e st ee st et s bt e s sttt et s s bt sttt a bt s s st s assetn 219
PrOPEITIES ..ceereuricrrerenrissseasesssessessesssessesssssssassssssssssasssssssesstssstsstasssssssssssssssssssssssssssssssssses 219
RefleCtioN ODJECT FUNCLIONSuuveereter ettt sss s ssss s sassssssbsssasssssssss s ssssssssassssssasssansens 219
FIN oot s st s s ss s sR eSS R AR AR AR AR R Rt 219
REFIECTIONINTO ODJECT ... sessstsssassssssssassssssssssssasssssssssssssssssssssssssssssssssssssseses 220
ReflectionINfO ODJECT PrOPEITIES ..vweeereeereerreereeeseessisssens 220
AFGUIMENTS eceeeeicureeuneetesseseaesstse sttt e st s st e s s e st ssseas s st s et b st est st ae s bt as st st ae s st s bt s s s st asssbsess bt s ssbstasssastas 220
AALATYPE ottt sttt sase bt s sttt bbbttt bttt es 220
AEFAUIVAIUE .ttt s s b s bbb bbb e s st bbb e st Rt s s baeen 220
AESCIIPLION oottt s b st s s b s s s e s s s s et s e s s e A s s as e At s s s s b s b st e s ansssssessestantans 220
NI ettt et R AR AR AR AR AR R bbb e AR ARt n e 221
ISCONIRCTION ettt rsseessssse s sssesssssssessssssassssssssssesssssss s s s esssasssassssssassss s sssasssassssasassasssassssssssssassssssessssss 221
IMIAX cecureeruretacusaseensestesstsssastusssestasssansssassassetesassstsssstasassetessssstassstassssstassssetassstessstetassssstussetetustetussstesussatetussetassstesnssstasnssntn 221

IYUI coeeecteeteensesesessesssessessesstsessestsssessessassssessassssessessassssnssassssessassessssssstssssssssasssssessssssssssssssssnssssstsssssstsssssssssssssssssssssssssens 221
DA ..ttt ettt sess s ste st s s st ss st b s s e st e st s bt ae s s bt s s ee st b s sttt et b s sttt a bt s s st aesetn 221

L1377 01O 221
LOCAlIZING EXTENASCHIPT STINGS ccuuvuivrrrinrieeisseiseiseisssssssssisssssessess 222
Variable values in [0CAlIZEA STINGS ...cvvirereirrineiseissisesessssisssens 222
ENabling automatiC l0CAlIZAtION ...ttt ssssssssssss s ssassassssssssssns 222
LOCAIE NAMES c..oeverterrirrtssess s ssssesss s ssssssss s sasssssssessses e s s st s sass s s s e ssss s sasssesssss e ssssssassssssasssessasssssssassssssasssnsssns 223
TESTING [OCANZATION woureericrtsersres sttt sss s s ass b s et s s e bt ass e s bt s s s s e basssenbasssantans 224
GIODAI 1OCANIZE FUNCLION oottt ssasssassssssssssssasssssssssssssssnns 225
[OCANIZE et ssss s s st s s ssssssas s s s s s s e s bR RS R et AR bR bR bR e b s 225
User NotifiCation HEIPEI FUNCHIONS ...t esssssssssssssssssssssssnsssssssssessasssssssessassasssasssssssssassssssasssessans 226
GlODAI AIEIT FUNCHION ..ottt es s sssssssssss s s s bassssssssssass s sasssssssssbss s sass s sasssensssssasssassssssanees 226
AIEIT ettt sttt st ss st ass st R s e R AR R AR R R AR AR AR AR AR e en 226
GlODAl CONTFIIM FUNCHION ...ttt st sssssss s ssbss s sasssesssssbsss s st s sessess bt s sass b sasnsasssensas 227
CONFITIN oottt e s ssssessssssssssss s as s ss et s s s es s s s RS RS eE SR A SRS E AR s AR b s s ss e saassnses 227
GlODAl PrOMPE FUNCLION ...ttt sssbessasssssssssass s b st s sass b ss s b st ssssssasssessassbessasssassbessassensanssas 227
PrOMPT ettt ss st s st et s st e st e st e s st se bbbt e b sttt ettt s st as st s st s s sstseassstn 227
SPECIfYING MEASUIEMENT VAIUEScovtereeireerisrisssissiessisssss s ssassssssssssessens 229
UNTEVAIUE ODJECT ..t ississtsssassssssssssssssssssssssssssssasssssssssssssssssssssssssssssssassssssaons 229
UNTTVAIUE ODJECT CONSTIUCTON c.cvureerevrrerisenrerisisseeessssisssssssssessssssssssssssssssssssssssssessssssssssssssssssssssssssssasssssssssssssssssssess 229
UNTTVAIUE ODJECT PrOPEITIES....uveereerrisrinneesesississessssssssssssssssssssssssssssessess 230
DASEUNIT ...ttt ssssssssssssssssssbssesssssssssssssssssassssssssssassssssssssssssassssassssessssssessssssssssessssssssssesssasssssssssssssess 230

1137/ 01O 230
VAIUE oottt sttt sass b s sssssasssssssssssss s ssssssssssssasssenssssssss s sssssassssssses essssssasssessssssasssensssssansssssssssassnsssnsessens 230
UNITVAlUE ODJECT fFUNCLIONS ...ttt ssssssssss s s ssasssssssssssssens 230

DSttt s RS SRR RS RS e RS SS R S RS SRR RS eR bR E R b s R b bbb 230
CONVEITueueureeeeeureceeusesseessessesssseasessesssseasasssssasessssssssasasssstasssssssstasssssstasessstastassssstassessssasssesstassasssassssssastsssssssassssssssses 230

Adobe Creative Suite 2

Bridge JavaScript Reference 17
Converting pixel aNd PEIrCENTAGE VAIUES ...t isssesssasses 230
COMPULING WIth UNIE VAIUES ..ottt sssasssssssssssssssssensssssssssassasssasses 231

Modular Programming SUPPOIT ... ceeeeeseesseessseesessssesssesssessssesssesssecssessssssssessasssssssssessssssssessssssssssssesssessassssesssessssssass 233
PrEPIOCESSON AIFECHIVES ...ttt st ass sttt s s s s s s s bbb bbb ass s bbbt sas e e b assansassansaneas 233
HONGINE NIAME st ssesssasesssssssss st sasesssasessssssssssssssssasasssssessssssssssssssssassassssassssssssssnns 233
FINCIUAE Il ettt sttt sttt st s s s st bbbttt bbb aaes 233
HINCIUAEPATN PALH .ottt s b s s b st as s e ass s bas 234
HSCHIPT NAMIE sttt ssss s s s aas s st b s s s s bt s b s bbbt st as bt st ssstssasssssssanen 234

FSEIICE O ettt ettt sssesssesssasesssssessssssssssasesssssesssssessssssssssssssssssssssssesssssssasesssssessssssssssassassssasssssssssssns 234
HLATGET NAME ... st bbb s e bbb R s b s Rt s 234
Importing and eXPOorting DETWEEN SCHIPTS.......cvrrireiirsiieeesssssssissssssssssssssssssssssssssssssessssssssssssssssssssssssssssssssns 234
OPEratOr OVEIOATING ..ottt isssssss s sssssss s sssssssssssssssssssessssssssssassssssssssssssssssssssssessssssessssssssssassssssssnsessans 236
Application and NamMESPACE SPECITIEIS ...t isssessasssnss 237
APPHCALION SPECIFIEIS ettt sttt s st ssssssssssssssassssssssssasssssssssssssssssssssssssassssssesssssssessasssssssssssnsans 237
NAMESPACE SPECITIEIS cuurrtereerreertrrrrestsestssesssstes s ssssessassssssessssssasssessasssessasssasssssssessasssessssssasssasssssasssessanssnsssnsasssnsssssanns 238
Script Locations and Checking Application INSTAIAtioNereneninreneinsissississssssssssssssesssssssssssssessssssssess 238
INA@X ceuerriisinnnensnnenscnsessssssessnsasssssssssssssessssssssssssessssssssssssssssassssssssssssasssse 240

Bridge JavaScript Reference

Adobe Creative Suite 2

18

Welcome

Welcome to the Bridge JavaScript Reference. This book describes how to use JavaScript to manipulate and
extend Adobe® Bridge for Adobe Creative Suite 2.

The Bridge JavaScript Reference describes how to use the scripting API to extend and manipulate Adobe
Bridge, but it is not a user’s guide for the Bridge application and its user interface.

This book provides complete reference information for the JavaScript objects, properties, and functions
defined by Adobe Bridge, and for various utilities and tools that are part of ExtendScript, the Adobe
extended implementation of JavaScript.

This book also describes how to use the interapplication communication framework that is defined by
Adobe Bridge and included in each Adobe Creative Suite 2 application. You can use this framework to
write scripts that call on functionality from different applications, or to send scripts and data from one
application to another. A set of Sample Workflow Automation Scripts is provided with Adobe Creative
Suite 2, which demonstrate how scripts can be used to create a workflow that takes advantage of
functionality in different applications.

This book is for developers who want to extend the capabilities of Adobe Bridge using JavaScript, call
Bridge functionality from scripts, and use scripts to communicate between Adobe Creative Suite 2
applications. It assumes a general familiarity with the following:

e JavaScript
e Cand C++ programming
e Adobe Bridge

e Any other Adobe Creative Suite 2 applications you are using, such as lllustrator® CS2, Photoshop® CS2,
or InDesign® CS2. The scripting API details for each application are included with the scripting
documentation for that product.

This book provides conceptual information about the scripting Adobe Bridge and detailed reference
information about the JavaScript objects that Adobe Bridge provides. It also provides both usage and
reference information for the tools, utilities, and objects that are part of ExtendScript, the Adobe extended
implementation of JavaScript.

This book contains the following chapters:

e Chapter 1, “Scripting Bridge,” introduces some important concepts in Adobe Bridge scripting and
describes the Bridge JavaScript document object model (DOM).

e Chapter 2, “"Event Handling and Script-Defined Browse Schemes,” describes how Adobe Bridge
generates user-interaction events, and how you can respond to these events by defining handlers in

19

Adobe Creative Suite 2
Bridge JavaScript Reference Welcome 20

your scripts. In addition, it describes how to define browse schemes that allow you to extend or modify
what is shown in the Bridge Favorites pane.

e Chapter 3, “Creating a User Interface,” describes the various options available to scripts for interaction
with Bridge users, such as dialog boxes and navigation bars.

e Chapter 4, “Using File and Folder Objects,” describes how to use the ExtendScript objects that provide
platform-independent access to the underlying file system.

e Chapter 5, “"Using ScriptUl,” describes how to use the ExtendScript user interface module, a set of
objects which provide windows and user-interface controls for the scripting environment.

e Chapter 6, “Bridge DOM Object Reference,” provides a complete API reference for the objects,
properties, and functions defined in the Bridge document object model.

e Chapter 7, “File and Folder Object Reference,” provides a complete API reference for the ExtendScript
file-system access objects, properties, and functions.

e Chapter 8, “ScriptUl Object Reference,” provides a complete API reference for the ExtendScript
user-interface objects, properties, and functions.

e Chapter 9, “Interapplication Communication with Scripts,” describes how to use the interapplication
communication framework, and provides a complete API reference for the Cross-DOM and for the
messaging framework.

e Chapter 10, "ExtendScript Tools and Features,” describes the ExtendScript Toolkit debugging
environment, and provides a complete API reference for the ExtendScript utilities and features that are
available to all Adobe Creative Suite 2 applications.

Monospaced font Literal values and code, such as JavaScript code, HTML code, filenames, and
pathnames.

Italics Variables or placeholders in code. For example, in name="myName", the text
myName represents a value you are expected to supply, such as name="Fred".
Also indicates the first occurrence of a new term.

Blue underlined text A hyperlink you can click to go to a related section in this book or to a URL in
your web browser.

Sans-serif bold font | The names of Bridge Ul elements (menus, menu items, and buttons).

The > symbol is used as shorthand notation for navigating to menu items. For
example, Edit > Cut refers to the Cut item in the Edit menu.

Note: Notes highlight important points that deserve extra attention.

This reference does not list properties and methods provided by the JavaScript language itself. For
example, it is common for JavaScript objects to provide a toString method, and many of the objects
the SDK supplies implement this method. However, this book does not describe such methods unless they
differ from the standard JavaScript implementation.

Adobe Creative Suite 2
Bridge JavaScript Reference Welcome 21

Similarly, because most objects provided by the SDK have a name property, the reference does not list
name properties explicitly.

When a JavaScript function returns a value, it is listed.When there is no return value listed, the function
does not return a value.

This book does not describe the JavaScript language. For documentation of the JavaScript language or
descriptions of how to use it, see any of numerous works on this subject, including the following:

JavaScript: The Definitive Guide, 4th Edition; Flanagan, D.; O'Reilly 2001; ISBN 0-596-00048-0
JavaScript Programmer’s Reference; Wootton, C.; Wrox 2001; ISBN 1-861004-59-1

JavaScript Bible. 5th Edition; Goodman, D. and Morrison, M.; John Wiley and Sons1998; ISBN
0-7645-57432

1

Scripting Bridge

This chapter introduces some important concepts in Adobe Bridge scripting and describes the Bridge
JavaScript document object model (DOM).

Adobe Bridge provides a configurable, extensible browser platform that allows users to search for and
select files by navigating among files and folders in the local file system, those on remote file systems, and
also web pages accessible over the Internet.

Bridge is integrated with Adobe Creative Suite 2, and various applications bring up the Bridge browser
window in response to specific user actions that require file selection. You can also bring up a Bridge
browser window independently, by invoking it interactively or through a script.

The Bridge browser is highly configurable and extensible, using ExtendScript, the Adobe extended
implementation of JavaScript. ExtendScript files are distinguished by the . j sx extension. ExtendScript
offers all standard JavaScript features, plus additional features and utilities, such as:

e Platform-independent file and folder representation

e Tools for building a user interface to a script

e Aninteractive development and debugging environment (the ExtendScript Toolkit)

You can use ExtendScript to manipulate browser windows and their contents programmatically, and to

change and extend their functionality. This manual describes what you can do, and provides a complete
reference for the ExtendScript objects and functions that you can use to program Bridge.

Bridge executes scripts in any of these ways:
e On startup, Bridge executes all JSX files that it finds in the startup folders.
e InWindows’, the startup folders are:

$APPDATA%\Adobe\StartupScripts
$APPDATA%\Adobe\StartupScripts\bridge\version

e InMac OS’, the startup folders are:
~/Library/Application Support/Adobe/StartupScripts/
~/Library/Application Support/Adobe/StartupScripts/bridge/version/

Note: If your script is in the main startup folder, it is also executed by all other Adobe Creative Suite 2
applications at startup; see Script Locations and Checking Application Installation.

The version portion of the Bridge-specific folder path is an exact version number. That is, scripts in the
folderbridge/1.5 are executed only by Bridge version 1.5, and so on.

e You can pass a script to the Bridge executable to be executed on startup, by dragging the JSX file icon
onto the Bridge executable file icon or shortcut. This script is executed after all startup scripts.

22

Adobe Creative Suite 2
Bridge JavaScript Reference Scripting Bridge 23

e When the Bridge browser window displays a JSX file, you can double-click that file thumbnail to run the
script in its target application. It runs in Bridge if the script specifies Bridge as its target application by
including the directive:

#target "bridge"

If the script specifies another Adobe Creative Suite 2 application as its target, ExtendScript starts that
application if necessary. If the script does not specify a target application, it opens in the ExtendScript
Toolkit. For details, see Preprocessor directives and The ExtendScript Toolkit.

e You can load and run a script in the ExtendScript Toolkit, specifying Bridge as the target application.
For details, see The ExtendScript Toolkit.

e You can add a menu command that runs a script to a menu or submenu in the Bridge browser, using
the MenuElement Object.

Adobe Bridge provides an interapplication communication framework, a way for scripts to communicate
with other Adobe applications, from Bridge or among themselves.

e A script can call certain basic functions exported by all Adobe Creative Suite 2 applications. For
example, a Bridge script could ask the user to select an image file, then open that file in Photoshop® or
lllustratore by calling the photoshop.open or illustrator.open function. These basic exported
functions are called the Cross DOM.

e Individual applications export additional functions to make more complex functionality available to
scripts. For example, a Bridge script can request a photo-merge operation in Photoshop by calling
photoshop.photomerge with a set of selected image files. The set of functions available for each
application varies widely.

e A messaging protocol provides a general and extensible framework for passing any kind of data
between messaging enabled applications. All Creative Suite 2 applications are messaging enabled. You
can send messages that contain JavaScript scripts. The target application can evaluate a script that it
receives, and send results back in a response message.

For additional information, see Chapter 9, “Interapplication Communication with Scripts."

A document object model (DOM) is an application programming interface (API), which allows you to
programmatically access various components of a document (as defined for that application) through a
scripting language such as JavaScript.

Each application in the Creative Suite 2 has its own DOM, which consists of a hierarchical representation of
the application, and of the documents used in the application. The DOM allows you to programmatically
access and manipulate the document and its components. Since the use of a document varies for each
application, the DOM terminology varies for each application. For example, each application's DOM
includes a Document class, but the object referred to is different for each application, and the bocument
class has different properties and methods for each application.

Applications typically define a Document class to deal with files of a particular type, such as HTML pages,
images, or PDF documents. However, Bridge uses a different approach. In the Bridge DOM, the Document
class refers to a Bridge browser window, and the properties and methods of Document refer to various
components of the Bridge user interface (Ul). The browser window displays icons that reference the files

Adobe Creative Suite 2
Bridge JavaScript Reference Scripting Bridge 24

that other applications consider documents—HTML pages, images, PDFs, and so on. In the Bridge DOM,
these icons are represented by the Thumbnail class.

Having a good understanding of the Bridge DOM, and how each aspect of the API relates to the Bridge
browser, will greatly enhance your ability to write scripts. In the Bridge DOM shown below, each node in
the hierarchy represents a class in the Bridge DOM API.

Bl Thumbnail
App
] Favorites
—— File, Folder
Document Thumbnail H
— MetaData
—— BrowseSchemeEvent
— NavBar ScriptUI Element
Event
Dialog
MenuElement
Preferences
PreferencesDialog

The Bridge App Object is the root of the hierarchy, and represents the Bridge application. A single global
instance of the App class, named app, is created when the application is started, and provides access to
global values. Even though the user can create multiple Bridge browser windows by selecting the File >
New Window command, making it appear that separate Bridge applications are running in parallel, only a
single instance of the application is running, which is reflected by a single instance of the app object.

The Document Object represents a Bridge browser window. Each time a user selects File > New Window,
a new document object is created. When multiple Bridge browser windows are open, the user can select
which window to use by clicking the window to make it active. In a script, you can access the active, or
most recently used, browser window through the app . document property. The set of all open browser
windows is available through the app . documents array.

Adobe Creative Suite 2
Bridge JavaScript Reference Scripting Bridge 25

The Thumbnail Object type represents a node in the browser navigation hierarchy. It typically represents a
a file or folder, but can also be associated with a web page. A document contains various collections of
Thumbnail objects.

Thumbnail objects can contain other Thumbnail objects, as for example, when a folder contains files. In
this case, the children property of the Thumbnail contains a hierarchy of Thumbnail objects that
represent files and folders contained in the folder.

The Folders pane shows the full navigation hierarchy of folders and subfolders for the local file system. A
script cannot add nodes to the Folders pane (except by creating new folders on disk), but your script can
access the selected thumbnail through the app . document . thumbnail property. It can walk the
navigation hierarchy by accessing the parent and children properties of each Thumbnail object.

The Favorites pane shows a selection of high-level nodes, some predefined and some chosen by the user.
These can represent web pages and remote folders, as well as local folders. The Favorites Object
represents the navigation nodes in the Favorites pane. A document contains a single Favorites object,
which is an array of Thumbnail objects. Access the Favorites object through app . favorites.

A script can add thumbnails to the lower part of the Favorites pane by using the Favorites object’s
insert method, and one level of sub-nodes using the addchild method. A subnode can be any
thumbnail; it does not have to be part of the root node’s children hierarchy.

The Thumbnail Object represents a navigation node. Thumbnails can represent entities such as files and
folders, accessed through a local or remote file system, or web pages accessed over the internet and
displayed in an embedded web browser. Each Thumbnail object is associated with one of the following
types of node identifier, which determines what happens when the user selects the icon:

e Fileorfolder objects;see Chapter 4, “Using File and Folder Objects," and Chapter 7, “File and Folder
Object Reference." Clicking a folder thumbnail in the Folders or Favorites pane displays the contents of
the folder in the Content pane.

e URLs. Clicking the thumbnail in the Folders or Favorites pane displays the web page associated with
the URL in the Content pane. This can be a local or remote HTML page. See Displaying HTML in the
Content Pane.

e Version Cue® nodes. Clicking a thumbnail in the Folders pane displays the contents of the Version Cue
workspace in the Content pane.

e Script-defined navigation nodes, which are associated with script-defined browse schemes. The display
in the Content pane is determined by the browse scheme’s associated handler. See Script-Defined
Browse Schemes.

Thumbnails are used in a number of ways within a browser window, and the objects are referenced
according to their use. For example:

e Access thumbnails that appear in the Favorites pane through app . favorites
e Access a thumbnail that is selected in the Folders pane through app . document . thumbnail

e Access thumbnails that appear in the Content pane through
app.document . thumbnail.children

Adobe Creative Suite 2
Bridge JavaScript Reference Scripting Bridge 26

e Access thumbnails that have been selected in the Content pane through app . document . selected

e Access thumbnails that are associated with a context menu through app . document . context

A Thumbnail object is associated with a Metadata Object, which allows you to access the external data
associated with the associated file, such a copyright owner, author, or camera settings. The metadata
object also allows access to an image thumbnail’s label string, which you can define and set through the
Bridge browser.

Your script can display information to or collect information from the user by configuring the supplied
navigation bars, or by creating and displaying dialogs.

ExtendScript provides a set of user-interface objects in the ScriptUl module, which defines windows and
user-interface controls. You can use these objects to define a user interface for your application, in the
form of popup dialogs, persistent dialogs (called palettes), or as part of navigation bars. The usage of the
ScriptUl objects is discussed in Chapter 5, “Using ScriptUl," and complete syntax details are provided in
Chapter 8, “ScriptUl Object Reference.”

You can also define a user interface using standard HTML. When integrating your user interface with the
Bridge browser, you can use either ScriptUl or HTML controls for any window or pane, but cannot mix the
two. For a complete discussion, see Chapter 3, “Creating a User Interface.

In addition to displaying a user interface for your script, you can script user interactions by extending the
Bridge menus.

The Bridge navigation bar immediately below the menubar cannot be scripted, but there are two
configurable navigation bars, above and below the Content pane. They are represented by NavBar
Objects, which you can access through the Document object’s navbars property.

By default, the navigation bars are hidden and empty.

e You can show and hide a navigation bar by setting the object’s visible property.

e You can configure a navigation bar to display either ScriptUl user-interface controls, or straight HTML
controls. It cannot mix the two.

e Todisplay ScriptUl controls, set the type property to "scriptui", then use the NavBar.add
method to add controls.

e Todisplay HTML controls, set the type property to "html", and the £ile property to the HTML
file that defines the page you want to display.

You can program the controls to display information to or collect information from the user. For additional
details, see Navigation Bars.

Your script can define dialogs to display information to or get information from the user. There are two
ways to define these:

e ScriptUI Dialogs: Use the ScriptUl Window Object to define a dialog that displays ScriptUl controls.

Adobe Creative Suite 2
Bridge JavaScript Reference Scripting Bridge 27

e Bridge Dialogs: The Dialog Object represents a window that displays an HTML page, rather than
ScriptUl controls.

You can invoke ScriptUl dialogs from a script as modal or nonmodal dialogs.

e A modal dialog retains the input focus, and does not allow the user to interact with any other
application windows until the dialog is dismissed. The function that invokes it does not return until the
dialog is dismissed.

e A nonmodal dialog (known in ScriptUI as a palette), does not keep the input focus. The user can interact
with other application windows while the dialog is up. The function that invokes it returns
immediately, leaving the dialog on screen until the user or script closes it.

For details of programming dialogs, see Chapter 5, “Using ScriptUl," and Displaying HTML in Bridge
Dialogs.

The MenuElement Object allows you to add new menus and commands. A script cannot remove or alter
the behavior of predefined menu items, but you can add, remove, and modify script-defined menus and
commands.

Most menubar menus and context menus can be extended by creating new MenuElement objects that
reference existing menus and menu items. The identifiers of all menus and menu items that are accessible
to scripts are listed with the description of the MenuE1lement object.

When interacting with Bridge, a user takes actions such as copying a file, or creating a new Bridge browser
window. For most of these actions, Bridge triggers a user-interaction event, represented by an Event Object
of a particular event type, with a particular target object, such as an App, Document, or Thumbnail object.
Some function calls can also trigger events.

Bridge defines default behavior for user-interaction events. You can extend or override the default
behavior by defining and registering an event-handler function. This function receives the Event object as
an argument, and returns a value that tells Bridge whether to continue with the default behavior or to
ignore it.

For more information on event handling, see Event Handling in Bridge.

The Preferences Object allows a script to access Bridge application preferences. These are the values that
can be viewed interactively in the Preferences dialog, in response to the Edit > Preferences command.
The settings are stored and persist across sessions. Your script can use the Preferences object to view or
set existing preferences, or to add new preference fields. In general, when you modify persistent
preference values, the new settings are not reflected in the browser window until the Bridge application is
restarted.

When the user brings up a Preferences dialog, Bridge invokes a ScriptUI dialog window, and generates a
create event with the PreferencesDialog Object as its target. You can define and register an event
handler for this event that uses the object’s add method to add a ScriptUl panel containing ScriptUI
controls that show and allow the user to modify script-defined preference values.

Adobe Creative Suite 2

Bridge JavaScript Reference Scripting Bridge 28

The Bridge DOM and the Bridge Browser Window

The following figure identifies parts of the Bridge browser window in a default configuration.
Menu bar. Thumbnails Contentpane Thumbnails Viewing mode

/A
\ My Pictures - Adobe Brilge 2
File Edit Tools Label ¥#w Window Help

unflersd > Cf 9 2 | @

Upper
navigation bar ——a - [& o Pt
Favorites ‘Egldarsy//

b Bridge Center /
148 My Computer

Favorites and

Folder panes 4 Version Cue
¥ collections
User section of (G eskaop
:) My Documents
Favorites pane v
Drag Favorites Here IMG_0571.JPG IMG_0573.0FG IMG_0574.JFG IMG_0594.0FG IMG_0595.JFG

21222004, 12:38:01 PM 212212004, 12:38:29 PM

2113/2004, 4:35:21 PM

213/2004, 4:19:58 PM 2(13/2004, 4:38:12 PM

Preview

Preview pane

IMG_0774 JFG
11/16/2003, 11:47:35 AM

IMG_0772.JFG
11/16/2003, 11:46:42 AM

IMG_0773.JFG
11/16/2003, 11:47:08 AM

IMG_0598 JFG
21222004, 12:44:50 PM

IMG_0607 JFG
316/2004, 1:02:59 PM

Metadata Keywords
= File Properties
Filename

Metadata and
Keywords panes

“TMG_0777JPG
° JPEG fila

S 111642003, 11:
° Today, 7:57:24.
S 11116/2003, 11:.

Date File Created
Date File Modified

Flyout menus

File Size © 430KB
Dimensions < 1600 x 1200
Resolution - 180 dpi IMG_0775.JPG IMG_0776 JFG IMG_0777 JFG IMG_0780 JFG IMG_0781.JFG
Bit Depth] hd 11/16/2003, 11:50:03 AM 11/16/2003, 11:50:34 AM 1/A16/2003, 11:59:44 AM 11/16/2003, 12:04:13 FM 11/16/2003, 12:06:55 PM
Q v
Status line@ ——————— 17 ieme. 1 selecten a s oEQ =

The following table describes how the Bridge APl maps to the various parts and features of the Bridge
browser window, and how a script can access each part or feature through the Bridge DOM.

Bridge window area Purpose Bridge DOM control

Represented by the Document object. Current
browser window is in app . document.

Displays files, folders, and web
pages.

Browser window

Access the visible thumbnails through the

Favorites pane

Provides a place for users to
drag and drop favorite items
(in the bottom half of the
pane).

Displays only top-level
containers and one level of
subnodes.

app. favorites property, and traverse the
hierarchy through the Thumbnail.children
properties.

The Favorites object allows you to add
thumbnails to this pane.

User interaction with a thumbnail in this
pane generates an event with a Thumbnail
target object and a location of favorites.

You can define your own browse scheme for a
thumbnail in this pane, which allows you to
extend or redefine the thumbnail’s behavior.
See Script-Defined Browse Schemes.

Bridge JavaScript Reference

Adobe Creative Suite 2

Scripting Bridge 29

Folders pane

Preview pane

Metadata pane

Keywords pane

Content pane

Thumbnails

Displays the navigation
hierarchy and controls
navigation.

Displays only containers (such
as folders and subfolders).

Displays image previews.

Displays metadata
information.

Displays keyword information.

Displays navigation results
when you select a node in the
Folders or Favorites pane, or
when you click on a navigable
node (such as a folder) in the
Content pane itself.

Displays both containers (such
as subfolders) and leaf nodes
(such as files and images).

Can display HTML pages for
web-type thumbnails.

The labelled icons that appear
in the Folders/Favorites panes
as navigation nodes, and in
the Content pane to represent
files and folders.

Access the currently selected thumbnail in
the Folder pane through the

Document . thumbnail property. Traverse the
hierarchy through the Thumbnail .parent and
Thumbnail .children properties.

User interaction with a thumbnail in this
pane generates an event with a Thumbnail
target object and a location of document.

User interaction with a thumbnail in this
pane generates an event With a Thumbnail
target object and a location of preview.

Metadata is displayed and written for a
specific thumbnail. Access metadata from
the Thurbnail .metadata property.

Not accessible to scripts.

Controlled by the browse scheme associated
with the thumbnail selected in the Folders or
Favorites pane. The browse scheme uses the
Thumbnail properties displayMode and
displayPath to determine what appears the
Content pane, and how it appears.

e When the selected thumbnail has
displayMode="filesystem", its children
appear as icons in the Content pane.
When a folder is selected in the Folders
pane, access the current contents of the
Content pane through
app.document . thumbnail .children(].

o When the selected thumbnail has
displayMode="web", the associated HTML
page (local or remote) appears in the
Content pane.

User interaction with a thumbnail in this
pane generates an event with a Thumbnail
target object and a location of document. The
selected thumbnails are available through
Document . selections.

The Thumbnail object represents a node in
the browser navigation hierarchy.
Thumbnails can represent File or Folder
objects, Version Cue nodes, URLs, or
script-defined nodes associated with
script-defined browse schemes.

Bridge JavaScript Reference

Adobe Creative Suite 2

Scripting Bridge 30

Menubar

Context menus

Browser window upper
navigation bar

Status line

Content Pane Viewing
Control

Top and bottom
navigation bar s

The menubar at the top of the
Bridge browser window.

The right-click menus
associated with thumbnails,
and flyout menus for some tab
panels.

The navigation bar
immediately under the
menubar. Not configurable.

The bottom bar on the Bridge
browser window.

The bar next to the status line,
where the viewing mode of
the Content paneis controlled.

Two configurable navigation
bars that can appear above
and below the Content pane.

While this is not an object under direct
Document control, you can add menus and
commands using the MenuElement object, by
referring to existing menus and commands.

You can add submenus and commands to
these menus using the MenuElement object,
by referring to existing commands.

Not accessible to scripts.

Controlled by pocument . status.

The view mode is controlled by
app.document . thumbnailViewMode.

Represented by predefined NavBar objects,
accessed through the bocument .navbars
property. By default, the navigation bars are
invisible. You can make a bar visible, and add
ScriptUl or HTML Ul controls to it.

Event Handling and Script-Defined Browse Schemes

A script can extend and modify the behavior of Adobe Bridge at a number of levels:

e At the highest level, the basic behavior of a thumbnail icon is determined by its browse scheme. There
are several predefined browse schemes that provide the most common kinds of behavior, such as
displaying the contents of a folder, or displaying a web page (see Thumbnails as node references). You
can select one of the predefined browse schemes to create a thumbnail that has the basic default
behavior you require. (see Thumbnail object constructor).

e You can intercept user-interaction events to extend or override the default behavior. These events
include actions on thumbnails (such as selecting them), and also actions on the application (quitting)
and on the browser window (such as activating it in the windowing system). See Event Handling in
Bridge below.

e You can modify the displayed thumbnails in the Favorites pane by defining thumbnails with
Script-Defined Browse Schemes.

When a user takes certain actions in Bridge, such as copying a file, or creating a new Bridge browser
window, Bridge generates a user-interaction event. You can modify the way Bridge responds to these
events by defining your own event handlers. Scripts can also generate events through function calls, that
simulate user activity, such as the Thumbnail Object’s open method, or the Document Object’s select
method.

An event-handler function takes one argument, an Event Object. This object, which is passed to your
registered handler when the event occurs, contains all of the context information about the event, such as
which type of event occurred, the target object that generated it, and where that object was located
within the browser window.

Your handler returns an object with a boolean handled property.

e When an event handler returns {handled:true}, Bridge does not look for any more handlers, nor
does it execute the default handler.

e When an event handler returns {handled: false}, Bridge continues to look for registered handlers,
and if no more script-defined handlers are registered, it executes the default handler. This is the default
behavior if your handler does not return a value.

Using this mechanism, you can extend the default behavior of the Bridge objects. For example, when the
user quits the Bridge application, your destroy event handler can take additional actions, such as cleaning
up structures you have made, or displaying status information. To extend the default behavior, your
handler returns the object {handled: false}.

In many cases, such as Thumbnail events, you can use the event handler to override the default behavior.
You do this by returning the object {handled:true}, which prevents Bridge from executing the default
handler.

31

Adobe Creative Suite 2
Bridge JavaScript Reference Event Handling and Script-Defined Browse Schemes 32

For some events, such as Document events, you cannot override the default behavior of the event. Even if
your handler returns {handled: true}, the default behavior still executes when your handler has
finished. The {handled:true} return value does, however, prevent Bridge from executing any
subsequent script-registered event handlers.

To register an event-handler function you have defined, create an EventHandler object and add it to
the array app . eventHandlers. An EventHandler is a simple JavaScript object with a handler
property that specifies the name of the event-handler function. There is no constructor, it is a simple
script-defined object. For example:

var myEventHandler = { handler: doThisEvent };
app.eventHandlers.push (myEventHandler) ;

You can write one handler that responds to many different events, or write one handler for each type of
event. When an event occurs, Bridge iterates through the app . eventHandlers array, trying each
handler in sequence, passing in the triggering event object. If one of the event handlers returns
{handled:true} Bridge stops the iteration.

» Example: Separate handlers for separate events

This script defines separate event handlers for two Document events, select and create, and registers
them by adding them to the app . eventHandlers array. These handlers return {handled:true},
which in this case does not override the default behavior of the events, but does tell the event handling
mechanism to stop processing subsequent script-defined event handlers.

// define handlers
onCreateDocument = function(event) {
if (event.object.constructor.name == "Document") {
if (event.type == "create") {
// Action to take in the event of Document create
Window.alert ("new document") ;
return {handled:true}; //stop processing event handlers

onFocusDocument = function(event) ({

if (event.object.constructor.name == "Document") {
if (event.type == "select") {
// Action to take in the event of Document focus
app.beep () ;

return {handled:true};//stop processing event handlers

}
}

// register handlers
app.eventHandlers.push({ handler: onCreateDocument}) ;
app.eventHandlers.push({ handler: onFocusDocument}) ;

Adobe Creative Suite 2
Bridge JavaScript Reference Event Handling and Script-Defined Browse Schemes

33

» Example: One handler for all document events

This script defines one event handler to handle several Document events, distinguishing the events
internally.

onDocumentEvent = function(event) {
if (event.object.constructor.name == "Document") {
if (event.type == "create") {
// Action to take in the event of Document create
Window.alert ("new document") ;
return {handled:true};//stop processing event handlers
}
else if (event.type == "focus") {
// Action to take in the event of Document focus
app.beep () ;
return {handled:true};//stop processing event handlers
}
else if (event.type == "select"){
// Action to take in the event of Document select
Window.alert ("document was selected") ;
return {handled:true};//stop processing event handlers

}
}
}
// register the handler

allDocEventHandlers = { handler: onDocumentEvent };
app.eventHandlers.push(allDocEventHandlers) ;

» Example: Cancelling a quit operation using app close

This script defines a handler for the App close event, which occurs when Bridge receives a request for
application shutdown. In this case, if the result object contains handled: true, the shutdownis
cancelled. This handler queries the user, and only continues with the operation if the user confirms.

var myHandler = function (event) {
if ((event.type == 'close') && (event.object instanceof App)) {
return { handled: Window.confirm("Really quit?") };
}

return { handled: false };

}

app.eventHandlers.push({ handler: myHandler });

» Example: Adding a service to Bridge using document create

This script defines a handler for the Document create event that adds a navigation bar to all new
browser windows. The script is placed in the startup script directory, so that it runs each time Bridge is

invoked. Whenever the user creates a new browser window, the event handler adds the navigation bar to

it.

e The navigation bar uses ScriptUl objects to display a text field in which the user can type a path. When

the user clicks Go or New in the navigation bar, the button’s onClick handler navigates to that path.

e Ahandler for the Thumbnail select event updates the navigation bar so that it always shows the
path of the currently selected thumbnail.

Note: This example is a variation of the navigation bar examples given in Chapter 3, “Creating a User
Interface.” See that chapter for more discussion of navigation bars.

Adobe Creative Suite 2

Bridge JavaScript Reference Event Handling and Script-Defined Browse Schemes

34

// Adds a path bar to all browser windows, which allows you to navigate
// by typing a path, and shows the path of the current selection

// Change current document to browse the path in the path bar
// (called when the Go button is clicked)
function browseToPath(message) {
try {
app.document . thumbnail = new Thumbnail (
app.document . topNavbar.pathPanel .browseField.text) ;
} catch (error) {
Window.alert (error) ;
}

}

// Open a new window to browse the path on the path bar.
// (called when the New button is clicked)
function browseToPathNewWindow(message) {
try {
app.browseTo (app.document.topNavbar.pathPanel .browseField.text);
} catch (error) {
Window.alert (error) ;
}
}

// Create the PathBar panel on a nav bar
function addTopBarPanel (bar) {
bar.pathPanel = bar.add("panel", [5,5, 830, 35], undefined) ;
bar.pathPanel .browseField = bar.pathPanel.add("edittext",
[3, 3, 700, 22],"");
bar.pathPanel .BrowseBtn = bar.pathPanel.add("button",
(710, 3, 760, 22],"Go");
bar.pathPanel .BrowseBtnNewWin = bar.pathPanel.add("button",
[770, 3, 820, 22],"New") ;
bar.pathPanel .BrowseBtn.onClick = browseToPath;
bar.pathPanel.BrowseBtnNewWin.onClick = browseToPathNewWindow;
}
// Create the PathBar on the top navbar of the document
function addNavBar (doc)
var topbar = doc.topNavbar;
addTopBarPanel (topbar) ;
topbar.visible = true;
topbar.pathPanel .browseField.text = theDocument.thumbnail.path;
}
// Handle document create event to add path bar to new browser windows.
onDocumentEvent = function(event) {

try {
if ((event != undefined) && (event.object != undefined)
&& (event.type != undefined)) {
if (event.object.constructor.name == "Document") {
if (event.type == "create") {

// Action to take on document creation
addNavBar (event.object) ;

// (check for no documents to avoid thumbnail event
// that occurs before first doc opens)
else 1if (event.object.constructor.name == "Thumbnail" &&

Adobe Creative Suite 2
Bridge JavaScript Reference Event Handling and Script-Defined Browse Schemes 35

app.documents.length != 0) {
if (event.type == "select") {
// Action to take on Thumbnail selection
// update the path bar to show the current path
if (app.document.topNavbar.pathPanel != 0) {
if (event.object.container) ({
app.document . topNavbar.pathPanel .browseField.text =
event .object.path;

}

else {

app.document . topNavbar.pathPanel .browseField.text =
event .object.parent.path;

}
}
else {
if (event == undefined) ({
Window.alert ("null event");
}

}
}
} catch (error) {
Window.alert (error) ;
}
}

// Register the event handler
app.eventHandlers.push({ handler: onDocumentEvent}) ;

The event handling mechanism described in this chapter applies only to the Bridge DOM objects. If your

script defines its own user interface, events are handled differently, depending on what kind of object
generated them:

e For events generated by ScriptUl objects (such as controls in the navigation bar), see Chapter 5, “Using
ScriptUl"

e Forevents generated by menu elements, see MenuElement Object.

e Events generated by HTML controls in HTML navigation bars or dialogs are handled by their own
HTML-defined handlers. These can access Bridge DOM objects through a callback mechanism. See
Displaying HTML in Bridge.

Adobe Creative Suite 2
Bridge JavaScript Reference Event Handling and Script-Defined Browse Schemes 36

A browse scheme (or navigation) protocol determines how Bridge performs navigation for each
thumbnail—that is, exactly what happens internally when a user opens, closes, clicks, double-clicks, or
otherwise interacts with the Thumbnail object in the Folders, Favorites, or Content pane.

Thumbnail objects that represent File or Folder objects, Version Cue nodes, and URLs have
predefined browse schemes. You can also create your own script-defined browse scheme, register it with
the application, and specify it as part of the path when you create Thumbnail objects.

Creating script-defined browse schemes allows you to create a navigation hierarchy that includes different
types of Thumbnail objects. This would typically be used to create a web service, where the root node
displays an HTML page that allows the user to make choices regarding the contents of contained folders.

For example, you can create a hierarchy that contains a top-level Thumbnail that points to a URL, and
sub-node Thumbnail objects that point to file system folders, which you might use to save files
downloaded from the URL. You can use the Favorites Object’s insert function to add the root of your
script-defined thumbnail hierarchy to the Favorites pane, where users can interact with it.

Selecting a thumbnail that points to a URL displays the remote page in an embedded browser in the
Content pane. Similarly, a thumbnail with a script-defined browse scheme can be used to display a
locally-defined HTML page in the Content pane. For details, see User Interface Options for Scripts.

The function app . registerBrowseScheme registers a new script-defined browse scheme protocol
with Bridge. To create a new protocol, simply assign it a name and register that name. You can then create
Thumbnail objects that use the registered name as the protocol part of the path argument (which takes
the form browseProtocol://pathSpecifier).

For example, the following code registers a new browse scheme, bank, and creates two new Thumbnail
objects that use that browse scheme.

app.registerBrowseScheme ("bank") ;

var bankRoot = new Thumbnail ("bank://root", "My Bank");
var transactions = new Thumbnail ("bank://transactions", "Transactions");

Thumbnails with script-defined browse-scheme protocols can be added to the top level of the Favorites
pane using the Favorites. insert method, or as subnodes of top-level nodes, if they are Thumbnail
objects with the same script-defined browse-scheme protocol. To add a subnode, use the
Favorites.addChild method. You cannot make a subnode from a Thumbnail that uses a different
browse scheme from its parent node, or one that is associated with a Folder object.

This simple definition does not associate any new behavior with the browse scheme, but can still be
useful. For this example to make use of existing browsing functionality in a new way, it simply assigns
different display styles to the Thumbnail objects at different levels of the hierarchy.

The following code adds the new Thumbnail objects to the Favorites pane. The first, bankRoot, is added
to the top level. The second, transactions, is added both as a thumbnail child and as a sub-node to
bankRoot:

bankRoot .displayPath "http://www.mybank.com";
bankRoot .displayMode = "web";
transactions.displayPath = "/C/BankTransactions";

Adobe Creative Suite 2
Bridge JavaScript Reference Event Handling and Script-Defined Browse Schemes 37

transactions.displayMode = "filesystem";
bankRoot .insert (transactions); //add thumbnail child

app.favorites.insert (bankRoot); //add node
app.favorites.addChild (bankRoot, transactions); // add subnode

The top-level thumbnail displays a URL, and the child displays a file. Because no special handler has been
associated with this browse scheme, the objects respond to events using the default browsing and
event-handling behavior:

e When the user selects the bankRoot thumbnail, Bridge navigates to the URL
http://www.mybank . com, and displays it in the Content pane. (You could set displayPath to
point to a locally-defined HTML page—see Displaying HTML in the Content Pane.)

e When the user selects the t ransactions thumbnail, Bridge navigates to the directory
C:\BankTransactions, and displays its contents in the Content pane.

Creating a User Interface

The Bridge scripting environment provides a number of options for interacting with users. You can handle
a user’s interaction with Bridge objects, such as thumbnails, through the event-handling mechanism
(Event Handling in Bridge), and you can extend the Bridge menus, adding your own submenus and
commands (MenuElement Object).

However, if you want to display your own window or pane to the user, you can do so in several ways: by
creating popup or persistent dialogs; by configuring and displaying predefined navigation bars; or by
defining user-interface controls to be displayed in the Content pane, in response to selection of specially
defined thumbnails.

You can define user-interface controls in any of these places in two ways:

e ScriptUl Elements: ScriptUl is a module that defines windows and user-interface controls. You can
create ScriptUl Dialogs Boxes and populate them with ScriptUl controls, or add ScriptUIl controls to the
existing Navigation Bars.

If you use ScriptUI controls, you can take advantage of the ExtendScript localization feature; see
Localization in ScriptUl Objects.

e HTML Pages: An HTML page can contain standard HTML user-interface controls. You can display HTML
pages in Navigation Bars, in Bridge Dialogs Boxes, or in the Content Pane.

You cannot use ExtendScript features or Bridge DOM objects directly in an HTML page; for details, see
Displaying HTML in Bridge.

Your script-defined windows or panes must use one or the other of these methods. You cannot mix
ScriptUl controls with HTML controls.

Bridge provides two configurable navigation bars, one of which can be displayed at the top of the Bridge
browser window (below the application navigation bar), and one at the bottom (above the status bar).
There are two versions of each bar, for use with the two display modes of the Content pane. Access these
existing NavBar Object objects through the Document Object’ s properties.

e When the Content pane is displaying a web page (Document . content PaneMode="web"), use these
bars:

topbar = app.document.navbars.web.top
btmbar = app.document.navbars.web.bottom

e When the Content pane is displaying a folder’s contents
(Document . contentPaneMode="filesystem"), use these bars:

topbar = app.document.navbars.filesystem.top

btmbar = app.document.navbars.filesystem.bottom

The navigation bars are hidden by default. You can show and hide them by setting the NavBar object’s
visible property.

38

Adobe Creative Suite 2
Bridge JavaScript Reference Creating a User Interface 39

A navigation bar typically contains user-interface controls such as push buttons, radio buttons, scroll bars,
list boxes, and so on. The NavBar objects are initially empty.

A navigation bar can display either ScriptUl user-interface controls that you add as children of the NavBar
object, or an HTML page that you reference from the NavBar object. It cannot mix the two. In either case,
you define the controls and program them to display information to or collect information from the user.

e Setthe NavBar.type to "scriptUI" to display ScriptUl controls. See Displaying ScriptUl elements
in a navigation bar.

e Setthe NavBar.type to "html" to display HTML controls. See Displaying HTML in a Navigation Bar.

A dialog box, like a navigation bar, can display either ScriptUl controls or HTML controls, but not both. In
the case of dialogs, there are two different types of objects.

e Create a ScriptUl Window Obiject to display ScriptUl controls. See Displaying ScriptUl Dialogs.

e Create a Bridge DOM Dialog Object to display HTML controls. See Displaying HTML in Bridge Dialogs.

The Content pane display is determined by the current thumbnail. When you select a thumbnail in the
Favorites or Folders pane (or invoke a Thumbnail Object’s open function), that Thumbnail Object’s
displayMode property determines what the Content pane displays.

You can define your own browse scheme and thumbnails that use that browse scheme, and add your
thumbnails to the Favorites pane. (For details, see Script-Defined Browse Schemes.) When you do this, you
can set the Thumbnail Object’s displayMode property so that when the user selects it in the Favorites
pane, it displays a user-interface panel in the Content pane.

e Ifyou set displayMode to web, the Content pane shows the HTML page referenced by
displayPath. You can define an HTML page containing user-interface controls. See Displaying HTML
in the Content Pane

Adobe Creative Suite 2
Bridge JavaScript Reference Creating a User Interface 40

ScriptUl is a module that defines windows and user-interface controls. There are three ways to display
ScriptUl elements:

e You can create an independent ScriptUl window, populate it with ScriptUl controls, and invoke it from
your script using the window’s show function. See Displaying ScriptUI Dialogs

e You can add ScriptUI controls to the existing Navigation Bars, and display them by setting by setting
the NavBar object’s visible property to t rue.

e You can add ScriptUI controls to the Ul panel associated with the Content pane, and display that panel
by double-clicking a thumbnail whose displayMode property is set to "script".

A script can define a window entirely in ScriptUl, by creating a Window Object and populating it with
ScriptUl controls using its add method.

You can invoke a ScriptUl window from a script as a modal or nonmodal dialog.

e A modal dialog retains the input focus, and does not allow the user to interact with any other windows
in the application (in this case, the Bridge browser window) until the dialog is dismissed. The function
that invokes it does not return until the dialog is dismissed.

e A nonmodal dialog (known in ScriptUI as a palette), does not keep the input focus. The user can interact
with the Bridge browser window while the dialog is up. The function that invokes it returns
immediately, leaving the dialog on screen until the user or script closes it.

In ScriptUIl, a modal dialog is a window of type dialog, and a modeless dialog is a window of type
palette.

e Invoke a dialog-type window as a modal dialog using the window object’s show function. In this
case, the function does not return until the user dismisses the dialog, or you close it from a control’s
callback using the window’s hide or close function. The close function allows you to return a value,
which is passed to and returned from the call to show.

e Invoke apalette-type window as a modeless dialog using the window object’s show function, which
returns immediately, leaving the window on screen. The user can close the window using the
OS-specific close icon on the frame, or you can close it from the script or a control’s callback using the
window’s hide function.

The usage of the ScriptUl objects is discussed fully in Chapter 5, “Using ScriptUl," and complete syntax
details are provided in Chapter 8, “ScriptUl Object Reference."

To display ScriptUI controls, set the type property to "scriptui", then use the NavBar Object’s add
method to add controls. This is the same as the ScriptUl Window Object’s add method.

» Example: Adding a path bar

This script defines a top navigation bar that uses ScriptUl objects to display a text field in which the user
can type a path. When the user clicks Go or New in the navigation bar, the button’s onClick handler
navigates to that path.

// Change current document to browse the path in the path bar
// (called when the Go button is clicked)

Adobe Creative Suite 2
Bridge JavaScript Reference Creating a User Interface 41

function browseToPath(message) {
try {
var topbar = app.document.navbars.filesystem.top
app.document . thumbnail =
new Thumbnail (topbar.pathPanel.browseField.text);
} catch (error) {
Window.alert (error) ;
}

}

// Open a new window to browse the path on the path bar.
// (called when the New button is clicked)
function browseToPathNewWindow (message) {
try {
var topbar = app.document.navbars.filesystem.top
app.browseTo (topbar.pathPanel .browseField.text) ;
} catch (error) {
Window.alert (error) ;
}

}

// Create the PathBar panel on a nav bar
function addTopBarPanel (bar) {
bar.type = "scriptui" // this is the default, so not really needed
bar.pathPanel = bar.add("panel", [5,5, 830, 35], undefined) ;
bar.pathPanel .browseField = bar.pathPanel.add("edittext",
[3, 3, 700, 221,"");
//theBrowseField = bar.pathPanel.browseField;
bar.pathPanel .BrowseBtn = bar.pathPanel.add("button",
[710, 3, 760, 22],"Go");
bar.pathPanel .BrowseBtnNewWin = bar.pathPanel.add("button",
[770, 3, 820, 22],"New") ;
bar.pathPanel.BrowseBtn.onClick = browseToPath;
bar.pathPanel.BrowseBtnNewWin.onClick = browseToPathNewWindow;

}

// Create the PathBar in the top navbar of the current document
var topbar = app.document.navbars.filesystem.top;
addTopBarPanel (topbar) ;

topbar.visible = true;

topbar.pathPanel .browseField.text = theDocument.thumbnail.path;

For detailed information on using the ScriptUl objects, see Chapter 5, “Using ScriptUl," and Chapter 8,
“ScriptUl Object Reference.”"

Adobe Creative Suite 2
Bridge JavaScript Reference Creating a User Interface 42

There are three mechanisms you can use to display an HTML Ul within Bridge:

e Atop or bottom NavBar displays HTML when navBar. file is set to the path of the HTML file, and
navBar.type="html".

e ADialog object always displays HTML Ul controls (as opposed to a ScriptUl dialog object, which
displays ScriptUl controls). You specify the HTML file to display as the argument when creating the
Dialog object. For example:

var myDialog = new Dialog("/C/BridgeScripts/HTML/dialogUI.html") ;

e Whenyou set thumbnail .displayPath to the path of an HTML file, and
thumbnail .displayMode= "web", then selecting that thumbnail in the Folders or Favorites pane
displays the HTML page in the Content pane.

In order to display the HTML, Bridge opens an embedded browser, which runs a standard JavaScript
engine in a different process from the Bridge ExtendScript engine. The standard JavaScript engine can
access only the standard HTML DOM. A script on the HTML page cannot directly access the Bridge DOM, or
make use of ExtendScript features such as localization.

For a script in your Ul page to communicate with the Bridge DOM, the HTML JavaScript engine and the
Bridge ExtendScript engine must exchange values via remote calls.

e For the JavaScript code to make remote calls to ExtendScript, you define callback functions on the
Bridge object, and invoke them from the HTML page with the JavaScript call function. The callback
functions access Bridge objects on the Bridge side and pass values back to the HTML page. See
Defining callbacks for HTML scripts.

e Your HTML page can define its own JavaScript functions in a script. For the Bridge side to use these
functions, it must make a remote call using the Bridge object’s execds function. See Executing script
functions defined on HTML Ul pages.

The three mechanisms for displaying an HTML Ul differ slightly in the details of how you define and pass
callbacks and invoke script-defined functions. This section provides examples for a web page displayed in
the Content pane, in response to selecting a web-type thumbnail. Examples for navigation bars and
dialogs are given with the discussions of those objects above.

When you make remote calls, you can pass simple values such as strings and numbers directly. However, in
order to pass complex values such as objects and arrays, you must deconstruct them on the passing side
using the JavaScript function toSource, and reconstruct them on the receiving side using the JavaScript
function eval. Examples are given for callbacks; see Passing Complex Values in Remote Calls. The
embedded browser does not support toSource, so you cannot pass complex values from the HTML page
back to the Bridge ExtendScript engine.

If you want to make use of Bridge DOM values to dynamically alter the HTML controls as the user works
with them, you must make calls back to the Bridge DOM through a set of callbacks that you define. The

Adobe Creative Suite 2
Bridge JavaScript Reference Creating a User Interface 43

exact way that you define and store the callbacks depends on which of the HTML mechanisms you are
using:

e Defining callbacks for a dialog

For a dialog, you define callback functions in a structure that you pass to the Dialog object's open or
run function when you invoke the dialog. The syntax for the callbacks argument is:

{

fn namel: function(args) { fnl definition },
fn name2: function(args) { fn2 definition }

}

The dialog’s HTML page can invoke these functions using the JavaScript call method. See the Using
callbacks in an HTML dialog.

e Defining callbacks for the Content pane or navigation bar

For HTML displayed in a navigation bar or in the Content pane, you define callback functions in the
jsFuncs property of the appropriate object:

e When a Thumbnail Object displays an HTML page in the Content pane, the Document Object’s
jsFuncs property stores callback functions for that page. See the examples given below.

e For a page displayed in a navigation bar, the callbacks are stored in theNavBar Object's jsFuncs
property. For examples, see Displaying HTML in a Navigation Bar.

From the HTML page, you can invoke your defined callback functions using the JavaScript call function.
Typically, you will do this from a control's event handler, such as the onC1ick method for a button. For
example, suppose one of your callbacks is defined as:

{ myCB: function(x) { return x > 0 } }
This defines a function named myCB. Within the HTML page's JavaScript, invoke the myCB Bridge DOM
method as follows:

var positive = call ("myCB", 29);

You must use the JavaScript call method to invoke callback functions. You cannot simply invoke them by
name.

A callback function can access the Bridge DOM and pass back a response, as shown in the examples. The
callback functions can receive and return simple types directly, but must use eval to reconstruct complex
types passed as arguments from the HTML side, and use toSource to serialize complex types that you
wish to return. See Passing Complex Values in Remote Calls.

An HTML page that displays user-interface controls within Bridge can itself contain a script that defines
functions. The execJds method (defined on the Document, NavBar, and Dialog objects) allows a Bridge
script to invoke a JavaScript method defined in an HTML page.

e When a Thumbnail Object displays an HTML Ul in the Content pane, use the Document Object’s execJS
method to execute functions defined in the script for that page. See the example below.

e For a page displayed in a navigation bar, use the NavBar Object's execJS method to execute functions
defined in the script for that page.

e For a modeless HTML dialog, use the Dialog Object's execJS method to execute functions defined in
the script for the dialog.

Adobe Creative Suite 2
Bridge JavaScript Reference Creating a User Interface 44

You should make sure that the HTML page which defines the remote function is actually loaded before
you invoke the remote function with execJs.

Caution: You cannot call the execJds method from within a callback function. Doing so causes Bridge to
hang. For an alternative, see Scheduling tasks from callbacks.

The execdS method takes as its argument a string that contains the entire function call to be executed.
For example, this JavaScript code packages a call to the function updatePath, defined in the HTML
displayed by myDialog:

myDialog.execdS ("updatePath('" + escape(tn.path) + "')");

In this case, it is passing a pathname that contains the backslash (\), which is an escape character. It uses
the escape function to create the argument string, and on the HTML side, the updatePath function uses
unescape to retrieve the path from the argument string:

<script> //define fns to be called from Bridge
function updatePath (path) { window.path.value = unescape (path) };
</scripts>

For a more complete version of this example, see Calling functions defined in an HTML navigation bar. The
technique is exactly the same for a dialog as for a navigation bar, except for calling the function in the
dialog object.

The Dialog Object represents a window that displays an HTML page. Use the open function to open the
window as a modeless dialog. This function returns immediately, and the dialog remains on screen until
the user or script dismisses it.

The open function takes as an argument a set of callback functions. These callbacks are used to respond to
a dialog-closing event, and to provide the dialog’s HTML JavaScript code with access to the Bridge DOM
(see Communicating with Bridge from dialog JavaScript).

You can provide special callback functions named willClose and onClose. If they are provided, these
are called automatically when the dialog closes in response to a user action (such as clicking the window’s
close icon, or clicking your button that sets closing to true).

e willClose takes noarguments and returns a Boolean value. If it returns t rue, Bridge calls the
onClose callback (if provided). If it returns false, the closing operation is aborted.

e onClose takes no arguments and returns undef ined. It should perform any cleanup operations for
the dialog and its associated code.

The HTML page displayed in a dialog runs its own JavaScript engine, which has access only to the HTML
DOM. If the page needs to exchange data with your Bridge DOM objects, you must use the remote call
mechanisms.

e You can define callbacks and pass them to the dialog as arguments to the run or open function that
invokes it. You can call them remotely from the HTML page’s JavaScript using the JavaScript call
function. These callback provide access to the Bridge DOM objects. See Using callbacks in an HTML

dialog.

Adobe Creative Suite 2
Bridge JavaScript Reference Creating a User Interface 45

e You can define JavaScript functions in the HTML page’s script, and call them remotely from Bridge
using the Dialog Object's execJS function—as long as you do not call them directly from a callback. See
Calling functions defined in an HTML dialog and Scheduling tasks from callbacks.

Simple values such as strings and numbers can simply be passed back and forth, as shown in the examples
below. Complex value such as arrays or objects must be deconstructed and reconstructed, using
toSource and eval. For details of how to pass objects in remote function calls, see Passing Complex
Values in Remote Calls.

The callback functions that you define for a dialog are available to the code in the HTML page, which can
invoke them using the call function. They run in Bridge's JavaScript engine, and can use Bridge DOM
objects.

For example, suppose the callback argument that you pass to the open function has the value:

{ isGreater: function(x) { return x > myDialog.height } }

A method in the HTML page (an event handler, for instance) can invoke the function and receive the result
as follows:

var newHeightOK = call ("isGreater", 29);

The following example creates a dialog that references an HTML page, which provides interface controls to
select a file and a metadata key, and a button to request the metadata from the Bridge DOM.

Clicking the Get Metadata button invokes the Bridge DOM getMetadata callback, which is defined in
the callbacks argument to the open or run method that invokes the dialog. The getMetadata
function retrieves the metadata for the specified file by creating and accessing a Thumbnail object for that
file. It sends the results back to the HTML JavaScript, which displays those results in the a text-box control
on the HTML page.

The user can close the dialog box by clicking the Done button, which sets the dialog’s c1osing property
to true. This in turn invokes the doClose callback, which is also defined in the callbacks argument.
The doClose callback allows you to take any cleanup actions necessary prior to the closing of the dialog
box. In this case, it simply demonstrates that it has been called by putting up an alert message.

Code in the HTML file

This HTML page is displayed by the two dialog examples below. This code, in the file
C:/BridgeScripts/HTML/dialogUI.html, defines the HTML controls, and includes event-handling
code that invokes the dialog’s callback functions.

<HTML>

<HEAD>

<META http-equiv="Content-Script-Type" content="text/javascript"s>
<TITLE>Bridge UI/HTML Integration</TITLE>

</HEAD>

<BODY>

For File: <INPUT type=file name="fname" size = "65">

<brs>
Get Metadata key:
<select name="mdkey">
<option value="FileSize">FileSize

Adobe Creative Suite 2
Bridge JavaScript Reference Creating a User Interface 46

<option value="FileName">FileName
<option value="DocumentKind">DocumentKind
</select>
<INPUT type=button title="Get Metadata" name="go" value="Get Metadata"
onclick="var t = call('getMetadata',window.£fname.value,
window.mdkey.value) ;

window.mresult.value = t;" >

<brs>
Result: <input type=text title="mresult" name="mresult" size = "50">

<Input type=button title="Done" name="done" value="Done"
onclick="var d = call('closeDialog');" >

</BODY>
</HTML>

Code in the Bridge script

This script defines the dialog and its callback functions, and invokes it using the open function, which
opens it as a modeless dialog.

The open function returns immediately, demonstrated by the fact that the alert message, "Return from
dialog.open’, appears immediately after the dialog is opened. Although it is not demonstrated by this
example, your Bridge script could close the dialog before the user dismisses it, using the dialog.close
method. For example, you might want to close the dialog if the user opens a new Bridge Browser window,
or as part of your cleanup in response to application shutdown. If you do this, the doClose callback is
automatically executed.

myFile = File("/C/BridgeScripts/HTML/dialogUI.htm") ;
var mdDialog = new Dialog (myFile) ;
var jsCallbacks = {
getMetadata: function(x,y) {
var tn = new Thumbnail (File(x)) ;
return (tn.metadataly]) ;
b
closeDialog: function() {
Window.alert ("Closing Dialog" + mdDialog) ;
mdDialog.closing = true;
b
doClose: function() {
/* do any cleanup before closing window */
/* called automatically by the dialog’s close function */
Window.alert ("In doClose") ;

}
}i
mdDialog.title = "Get Metadata";
mdDialog.width 512;
mdDialog.height = 512;
mdDialog.modal = false;

mdDialog.open(jsCallbacks); // display as modeless dialog
Window.alert ("Returned from dialog.open ") ;

Adobe Creative Suite 2
Bridge JavaScript Reference Creating a User Interface 47

If the HTML page displayed in the dialog defines any JavaScript functions of its own, Bridge can make
remote calls to those functions using the Dialog Object’s execlJS function. For a modeless dialog, this
works exactly the same way as for a navigation bar or a page displayed in the Content pane. For an
example, see Calling functions defined in an HTML navigation bar.

Caution: You cannot call the execJds method from within a callback function. Doing so causes Bridge to
hang. For an alternative, see Scheduling tasks from callbacks.

To display HTML controls, set, set the type property to "html", and the £ile property to the HTML file
that defines the page you want to display.

When a navigation bar displays HTML, it runs its own JavaScript engine, which has access only to the HTML
DOM. If the page needs to exchange data with your Bridge DOM objects, you must use the remote call
mechanisms.

e You can define and store callbacks in the NavBar Object's jsFuncs property and call them remotely from
the HTML page’s JavaScript using the JavaScript call function. These callback provide access to the
Bridge DOM objects. See Using callbacks from an HTML navigation bar.

e You can define JavaScript functions in the HTML page’s script, and call them remotely from Bridge
using the NavBar Object's execJS function—as long as you do not call them directly from a callback.
See Calling functions defined in an HTML navigation bar and Scheduling tasks from callbacks.

These examples demonstrate HTML navigation bars that use remote calls in both directions.

This example displays HTML controls in the top navigation bar, allowing the user to select a file and a
metadata key, and to request the metadata value from the Bridge DOM by clicking a button. Clicking the
button invokes the getMetadata callback function, which is defined and stored in the NavBar Object's

jsFuncs property.

When the callback is executed, it retrieves the metadata for the specified file, and sends the results back to
HTML JavaScript. The HTML code displays the result in another control.

Code in the Bridge script
This code defines the navigation bar, and a callback to be invoked remotely from the HTML page.

var jsCallbacks = {
getMetadata: function(x,y) {
var tn = new Thumbnail(File(x));
return (tn.metadatalyl);
b
}i

function addNavBar () {
var topbar = app.document.navbars.filesystem.top;
topbar.height = 65;
topbar.type = "html";
topbar.file = File("/C/BridgeScripts/HTML/navbarUI.html") ;

Adobe Creative Suite 2
Bridge JavaScript Reference Creating a User Interface 48

topbar.jsFuncs = jsCallbacks;
topbar.visible true;

}

addNavBar () ;

Code in the HTML file

This code defines the controls to be displayed in the bar and invokes the getMetadata callback function
in response to a button click.

<HTML>

<HEAD>

<META http-equiv="Content-Script-Type" content="text/javascript"s>
<TITLE>Bridge UI/HTML Integration</TITLE>

</HEAD>

<BODY>

For File: <INPUT type=file name="fname" size = "100">

Get Metadata key:
<select name="mdkey">
<option value="FileSize">FileSize
<option value="FileName">FileName
<option value="DocumentKind">DocumentKind
<option value="Creator">Creator
</selects>
<INPUT type=button title="Get Metadata" name="go" value="Get Metadata"
onclick="var t = call('getMetadata',window.fname.value,
window.mdkey.value) ;

window.mresult.value = t;" >
Result: <input type=text title="mresult" name="mresult" size = "50">
</BODY>
</HTML>

If the HTML page displayed in a navigation bar defines any JavaScript functions of its own, Bridge can
make remote calls to those functions using the NavBar Object's execJS function, as shown in the following
example. If a Bridge HTML dialog displays the HTML page, use the same technique, but call the Dialog
Object's execJS function.

In this example, the HTML page displayed in the top navigation bar has two text boxes, a path and a
quantity. Each time the user selects a Thumbnail for a file or folder, the corresponding path name is
displayed in the Path box. If the user selects a folder, the number of items in the folder is displayed in the
Number of Items box.

The HTML script defines two JavaScript functions, updatePath and updateItemQty, to perform these
updates. However, these functions operate on values retrieved from Bridge objects, which must be passed
in from the Bridge ExtendScript engine.

The update functions need to be invoked in response the user selecting a thumbnail. This action generates
a Thumbnail select event on the Bridge side, so the Bridge script defines a handler for that event,
which invokes the remote functions by calling execJds. It gets the required values from Bridge DOM

Adobe Creative Suite 2

Bridge JavaScript Reference Creating a User Interface 49

objects, packages the function call (the name and its argument list) as a string, and passes that string as
the argument to execJs.

Before you use execJs to call functions defined in the HTML JavaScript code, you need to make sure that
the page is loaded, so that the functions are defined when you call them. In this example, the page uses
the HTML/JavaScript onloaded event defined on the BODY tag to invoke a callback (defined in the
NavBar's jsFuncs property), which sets a Bridge-script global variable, ht m1Loaded. The event handler
checks that variable before calling the remote functions.

If the page is loaded, the event handler invokes the HTML JavaScript function updatePath, which writes
the path argument into the Path text box. If the event happened to a folder object, it invokes the HTML
JavaScript function updateItemQty, which writes the itemQty argument to the Number of Items text
box. If the event was triggered by a noncontainer object, the script writes the string "n/a" to the text box.

Note: JavaScript uses the backslash (\) as the escape character, but the backslash is part of Windows
platform path names. Therefore, in order to pass the path name value, the script uses the JavaScript
escape function to encode the name it sends to HTML. On the HTML JavaScript side, unescape
decodes the string so it is properly displayed in the Path box with the backslash character.

Code in the Bridge script

The Bridge script points the navigation bar to the HTML page, and invokes functions defined on that page.

var htmlLoaded = false;
var jsCallbacks = {
loaded: function() {
htmlLoaded = true; //set a global to make sure page is loaded
}

}i

function addNavBar ()
var topbar = app.document.navbars.filesystem.top;
topbar.height = 65;
topbar.type = "html";
topbar.file = File("/C/BridgeScripts/HTML/navbar2UI.html") ;
topbar.jsFuncs = jsCallbacks;
topbar.visible = true;

}
onEvent = function(event) {
try {
if (event.object.constructor.name == "Thumbnail") {
if (event.type == "select" && htmlLoaded) {

// for thumbnail selection
var tn = event.object;
var topNb = app.document.navbars.filesystem.top;
//call fns defined in HTML page’s script
topNb.execdS ("updatePath('" + escape(tn.path) + "')");
if (tn.container) {
topNb.execdS ("updateItemQty (" + tn.children.length + ")");

}
else{

topNb.execdS ("updateltemQty ('n/a')");
}

}
}

} catch (error) {

Adobe Creative Suite 2
Bridge JavaScript Reference Creating a User Interface 50

alert (error);
}
}
// Add the event handler to the application

app.eventHandlers.push({ handler: onEvent});
addNavBar () ; //show the navigation bar

Code in the HTML file
The displayed HTML page defines two functions, which are invoked from the Bridge script.

<HTML>
<HEAD>
<META http-equiv="Content-Script-Type" content="text/javascript"s>
<TITLE>Bridge UI/HTML Integration</TITLE>
<script>
//define fns to be called from Bridge
function updatePath(path) { window.path.value = unescape(path) };
function updateItemQty(gty) { window.itemQty.value = gty };
</script>
</HEAD>

<BODY onload = "call('loaded') ">
<!--use callback to set Bridge global-->

Path: <INPUT type=text name="path" size = "100">

Number of Items: <input type=text title="itemQty" name="itemQty" size =
||25||>

</BODY>

</HTML>

The following examples use the Thumbnail and Content pane mechanism, and demonstrate how to pass
simple and complex values between Bridge and an HTML Ul page via callback functions. For similar
examples that use the NavBar and Dialog mechanisms, see Displaying HTML in a Navigation Bar and
Using callbacks in an HTML dialog.

This example shows how to use an HTML file as a user-interface to the Bridge DOM.

e The Bridge DOM script creates a Thumbnail Object that uses a script-defined browse scheme. Its
displayPath is set to the path of the HTML file shown below, and its di splayMode set to web. This
thumbnail is added to the Favorites pane.

e When the user selects the "HTML Sample" icon in the Folders pane, the testUI.html page appears in
the Content pane. This HTML file provides interface controls to select a file and a metadata key, and a
button to request the metadata from the Bridge DOM.

e Clicking the button invokes the Bridge DOM getMetadata function, which is defined in the
Document . jsFuncs property. The getMetadata function retrieves the metadata for the specified
file, and sends the results back to HTML JavaScript, which displays the results on the HTML page.

Adobe Creative Suite 2
Bridge JavaScript Reference Creating a User Interface 51

Code in the Bridge DOM script
var jsCallbacks = {
getMetadata: function(x,y) {
var tn = new Thumbnail(File(x));
return (tn.metadatalyl) ;
}
Vi

app.document.jsFuncs = jsCallbacks;

app.registerBrowseScheme ("myScheme") ;

var t = new Thumbnail ("myScheme://root") ;

t.name = "HTML Sample";

t.displayMode = "web";

t.displayPath = "/C/myScripts/html/testUI.html";
app.favorites.insert(t); //add the thumbnail to Favorites

Code in the HTML file testUl.html
<HTML>
<HEAD>
<META http-equiv="Content-Script-Type" content="text/javascript"s>
<TITLE>Bridge UI/HTML Integration</TITLE>
</HEAD>
<BODY >

For File: <INPUT type=file name="fname" size = "65">

<brs>
Get Metadata key:
<select name="mdkey">
<option value="FileSize">FileSize
<option value="FileName">FileName
<option value="DocumentKind">DocumentKind
</select>
<INPUT type=button title="Get Metadata" name="go" value="Get Metadata"
onclick="var t = call('getMetadata',window.£fname.value,
window.mdkey.value) ;

window.mresult.value = t;" >

<brs>
Result: <input type=text title="mresult" name="mresult" size = "50">

<brs>
</BODY>
</HTML>

To exchange simple values such as strings and numbers between Bridge and an HTML Ul page, you can
simply pass arguments and return values of those types in your callback and execJs functions. However,
complex values such as objects and arrays must be broken down and reconstructed on the other side. This
is true for communication in both directions—callbacks from HTML to Bridge, and execution of HTML
script functions by Bridge using execJs.

For a callback to receive an object as an argument, the calling function on the HTML side must serialize the
object into a string, using toSource, and pass the serialized string. On the Bridge side, the callback

Adobe Creative Suite 2
Bridge JavaScript Reference Creating a User Interface 52

function uses eval to reconstruct the object from the serialized string. Similarly, to pass an object back,
the callback function must use toSource to serialize the object and return the serialized string. The
receiving code on the HTML side must in turn reconstruct the object using eval. See the example below.

Note: The embedded browser does not support the toSource method, so you cannot use this
mechanism to pass complex values to and from HTML-page functions that you invoke using the
execJS method. Pass only simple values from the HTML JavaScript engine to the Bridge
ExtendScript engine.

This example shows a Bridge Document Object callback that sends an object to a script on an HTML page
being displayed in the Content pane.

Code in the Bridge DOM script

The callback function creates a JavaScript object and copies properties and values into it from file
metadata, which it accesses through a Thumbnail object. It then uses toSource to create a serialized
string from the object, and returns that string.

var jsCallbacks = {
getFileInfo: function (x) {

var tn = new Thumbnail (File(x)) ;
var info = {};
info.fileName = tn.metadata.FileName;
info.fileSize = tn.metadata.FileSize;
info.fileKind = tn.metadata.DocumentKind;
return (info.toSource()) ;

}

}i

app.document .jsFuncs = jsCallbacks;

app.registerBrowseScheme ("myScheme") ;

var t = new Thumbnail ("myScheme://root™") ;

t.name = "HTML Sample";

t.displayMode = "web";

t.displayPath "/C/MyScripts/HTML/contentPaneUI.html";
app.favorites.insert(t); // add the thumbnail to Favorites

Code in the HTML page

The HTML code makes a call to the callback function. When it receives the string value, it reconstitutes the
object using eval.

<HTML>

<HEAD>

<META http-equiv="Content-Script-Type" content="text/javascript"s>
<TITLE>Bridge UI/HTML Integration</TITLE>

</HEAD>

<BODY>

For File: <INPUT type=file name="fname" size = "65">

<brs>
<INPUT type=button title="Get File Info" name="go" value="Get File Info"
onclick="var ret = call('getFileInfo',window.fname.value);
var info = eval (ret) ;

Adobe Creative Suite 2
Bridge JavaScript Reference Creating a User Interface 53

window.filename.value = info.fileName;
window.filesize.value info.fileSize;
window.filekind.value = info.fileKind;" >

<brs>
File Name: <input type=text title="filename" name="filename" size

<brs>
File Size: <input type=text title="filesize" name="filesize" size = "50">

<brs>
Doc Kind: <input type=text title="filekind" name="filekind" size = "50">

<brs>

||50||>

</BODY>
</HTML>

You cannot call the execJds method from within a callback function (either stored in a jsCallbacks
property or passed as an argument to the Dialog open or run method). This attempts to re-enter the
JavaScript engine, which is already running and is not re-entrant. If you try to do this, Bridge will hang.

The alternative is to schedule a task, using the App Object’s scheduleTask function, from within the
callback function. From the function associated with the task, you can call execJs. Because it is not
executed until the callback returns, the task is free to make another remote call.

The first argument to scheduleTask is a string containing a script—in this case, a call to the execJs
function. For example:

var result = app.scheduleTask ("myFn(3);", 10);

If the script itself contains any strings, those must be indicated by enclosed quotes. For example:
var result = app.scheduleTask ("myFn('string argument');", 10);
If the enclosed string contains values derived from expressions, the script string must be concatenated,
and can become quite complex:
var result = app.scheduleTask ("myFn('" + escape(tn.path) + "')", 10);
The argument to execJS is also a string containing a script—in this case, a call to a function defined on an

HTML page. When the arguments to that function are also strings, and those contain values derived from
expressions, the resulting string is very complex.

The example below makes this string a little more manageable by breaking it down into modular pieces.
First, it builds the argument string for the remote function:

var toRecordArg = "'For File: " + tn.metadata.FileName + "'";

It uses that to build the entire string for the remote function call, which is the argument to execJs:

var execFn = "recordData (" + toRecordArg + ")";

Building the string for the call to execJs requires an additional layer of embedded quotes, which is very
difficult to achieve with only two types of quote character. To get around this, the example creates a
variable for a string containing the double-quote character, and uses it to build the entire function call
string, which is passed to scheduleTask:

var quote = '"';
app.scheduleTask ("app.document .execdS (" + quote + execFn + quote + ")")

Adobe Creative Suite 2
Bridge JavaScript Reference Creating a User Interface 54

This example defines a thumbnail that uses a script-defined browse scheme and displays a web page. That
web page (shown below) defines a function recordbData. The page makes a call to a callback function
defined in the script, and the callback function constructs and schedules calls to execJS, to be executed
after the callback returns.

Bridge Script

The callbacks for the page (defined in the Document Object’s jsFuncs property) include a function
getMetadata, which schedules two calls to the recordData function. For each task, it builds a string
containing a call to the Document Object’s execJS function, and passes it to the app . scheduleTask
function. (This is a very complex string, since the argument to execJs is also a string containing a
complete function call to recordbata, which itself takes a string argument.)

After the callback has returned, the scheduled tasks execute the remote function, which writes out data to
one of the HTML page’s controls.

htmlLoaded = false; // make sure page is loaded

// Define callback functions

var jsCallbacks = {

getMetadata: function (x,y) {
var quote = '"';
var tn = new Thumbnail (File(x)) ;
var toRecordArg = "'For File: " + tn.metadata.FileName + "'";
var execFn = "recordData (" + toRecordArg + ")";
app.scheduleTask ("app.document.execdS ("
+ quote + execFn + quote + ")",0, false);

toRecordArg = "! Metadata key " + y + " has value "
+ tn.metadataly] + "'";
execFn = "recordData (" + toRecordArg + ")";

app.scheduleTask ("app.document.execdS (" + quote + execFn
+ quote + ")",10, false);
return (tn.metadataly]) ;
b
loaded: function() {
htmlLoaded = true; //page is loaded
}
}i

app.document .jsFuncs = jsCallbacks;

// define thumbnail to show the HTML page
app.registerBrowseScheme ("myScheme") ;

var t = new Thumbnail ("myScheme://root") ;

t.name = "HTML Sample";

t.displayMode "web" ;

t.displayPath "/C/myScripts/HTM/testUISchedTask.html";

app.favorites.add(t); // add the thumbnail to the Favorites pane
app.document .thumbnail= t; // browse to the thumbnail

Adobe Creative Suite 2
Bridge JavaScript Reference Creating a User Interface 55

HTML code

This page, which is displayed by the thumbnail, defines a script function, recordbData. The button’s
onClick method calls the getMetadata callback, which schedules the recordbata function to be
executed remotely after the callback has returned.

<HTML>

<HEAD>

<META http-equiv="Content-Script-Type" content="text/javascript"s>
<TITLE>Bridge UI/HTML Integration</TITLE>

<script>
function recordData(logString) {
window.datalog.value = window.datalLog.value + '\n' + unescape(logString) ;

}

</script>

</HEAD>
<BODY onload="call('loaded') ">

For File: <INPUT type=file name="fname" size = "65">

Get Metadata key:
<select name="mdkey">
<option value="FileSize">FileSize
<option value="FileName">FileName
<option value="DocumentKind">DocumentKind
</selects>
<INPUT type=button title="Get Metadata" name="go" value="Get Metadata"
onclick="var t = call('getMetadata',window. fname.value,
window.mdkey.value) ;
window.mresult.value = t;" >

Result: <input type=text title="mresult" name="mresult" size = "50">

Datalog:

<textarea type="datalog" name = "datalLog" rows = "15"
cols = "75"></textarea>

</BODY>
</HTML>

Using File and Folder Objects

Because path name syntax is very different in Windows®, Mac OS®, and UNIX®, Adobe ExendScript defines
the File and Folder objects to provide platform-independent access to the underlying file system. A
File Object represents a disk file; a Folder Object represents a directory or folder.

e The Folder object supports file system functionality such as traversing the hierarchy; creating,
renaming, or removing files; or resolving file aliases.

e The File object supports input/output functions to read or write files.

There are several ways to distinguish between a File and a Folder object. For example:

if (f instanceof File)
if (typeof f.open == "undefined") ...// Folders do not open

File and Folder objects can be used anywhere that a path name is required, such as in properties and
arguments for files and folders. For details about the objects and their properties and methods, see
Chapter 7, “File and Folder Object Reference."

Note: When you create two File objects that refer to the same disk file, they are treated as distinct
objects. If you open one of them for I/0, the operating system may inhibit access from the other
object, because the disk file already is open.

When creating a File or Folder object, you can specify a platform-specific path name, or an absolute or
relative path in a platform-independent format known as universal resource identifier (URI) notation. The
path stored in the object is always an absolute, full path name that points to a fixed location on the disk.

e Use the toString method to obtain the name of the file or folder as string containing an absolute
path name in URI notation.

e Use the fsName property to obtain the platform-specific file name.

An absolute path name in URI notation describes the full path from a root directory down to a specific file
or folder. It starts with one or two slashes (/), and a slash separates path elements. For example, the
following describes an absolute location for the file myFile. jsx:

/dirl/dir2/mydir/myFile.jsx
A relative path name in URI notation is appended to the path of the current directory, as stored in the

globally available current property of the Folder class. It starts with a folder or file name, or with one of
the special names dot (.) for the current directory, or dot dot (. .) for the parent of the current directory. A

56

Adobe Creative Suite 2
Bridge JavaScript Reference Using File and Folder Objects 57

slash (/) separates path elements. For example, the following paths describe various relative locations for
the filemyFile.jsx:

myFile.jsx In the current directory.

./myFile.jsx

../myFile.jsx In the parent of the current directory.
../../myFile.jsx Inthe grandparent of the current directory.

../dirl/myFile.jsx In dirl, which is parallel to the current directory.

Relative path names are independent of different volume names on different machines and operating
systems, and therefore make your code considerably more portable. You can, for example, use an absolute
path for a single operation, to set the current directory in the Folder. current property, and use relative
paths for all other operations. You would then need only a single code change to update to a new platform
or file location.

There are some platform differences in how pathnames are interpreted:
e In Windows and Mac OS, path names are not case sensitive. In UNIX, paths are case sensitive.
e In Windows, both the slash (/) and the backslash (\) are valid path element separators.

e In Mac OS, both the slash (/) and the colon (:) are valid path element separators.

If a path name starts with two slashes (or backslashes in Windows), the first element refers to a remote
server. For example, / /myhost /mydir/myfile refers to the path /mydir/myfile on the server
myhost.

URI notation allows special characters in pathnames, but they must specified with an escape character (%)
followed by a hexadecimal character code. Special characters are those that are not alphanumeric and not
one of the characters:

/==t ()

A space, for example, is encoded as %20, so the file name "my file" is specified as "my$20file™
Similarly, the character & is encoded as $E4, so the file name "Braun" is specified as "Br%E4un".

This encoding scheme is compatible with the global JavaScript functions encodeURI and decodeURI.

A path name can start with a tilde (~) to indicate the user's home directory. It corresponds to the platform’s
HOME environment variable.

UNIX and Mac OS assign the HOME environment variable according to the user login. In Mac OS, the default
home directory is /Users/username. In UNIX, it is typically /home /username or /users/username.
Extend Script assigns the home directory value directly from the platform value.

In Windows, the HOME environment variable is optional. If it is assigned, its value must be a Windows path
name or a path name referring to a remote server (such as \ \myhost \mydir). If the HOME environment
variable is undefined, the Extend Script default is the user's home directory, usually the C: \Documents
and Settings\username folder.

Adobe Creative Suite 2
Bridge JavaScript Reference Using File and Folder Objects 58

Note: A script can access many of the folders that are specified with platform-specific variables through
static, globally available Folder class properties; for instance, appData contains the folder that stores
application data for all users.

A volume or drive name can be the first part of an absolute path in URI notation. The values are interpreted
according to the platform.

When Mac OS X starts, the startup volume is the root directory of the file system. All other volumes,
including remote volumes, are part of the /Volumes directory. The File and Folder objects use these
rules to interpret the first element of a path name:

e Ifthe name is the name of the startup volume, discard it.

e Ifthe name is a volume name, prepend /Volumes.

e Otherwise, leave the path as is.

Mac OS 9 is not supported as an operating system, but the use of the colon as a path separator is still

supported and corresponds to URI and to Mac OS X paths as shown in the following table. These examples
assume that the startup volume is Mac0SX, and that there is a mounted volume Remote.

URI path name Mac OS 9 path name Mac OS X path name
/MacOSX/dir/file MacOSX:dir:file /dir/file
/Remote/dir/file Remote:dir:file /Volumes/Remote/dir/file
/root/dir/file Root:dir:file /root/dir/file
~/dir/file /Users/jdoe/dir/file

In Windows, volume names correspond to drive letters. The URI path /c/temp/£ile normally translates
to the Windows path C:\temp\file.

If a drive exists with a name matching the first part of the path, that part is always interpreted as that drive.
It is possible for there to be a folder in the root that has the same name as the drive; imagine, for example,
afolder c:\Cin Windows. A path starting with /c always addresses the drive C:, so in this case, to access
the folder by name, you must use both the drive name and the folder name, for example /c/c for C:\C.

If the current drive contains a root folder with the same name as another drive letter, that name is
considered to be a folder. That is, if there is a folder D: \ ¢, and if the current drive is D :, the URI path
/c/temp/file translates to the Windows path D: \c\temp\ f£ile. In this case, to access drive C, you
would have to use the Windows path name conventions.

To access a remote volume, use a uniform naming convention (UNC) path name of the form
// servername/sharename. These path names are portable, because both Max OS X and UNIX ignore
multiple slash characters. Note that in Windows, UNC names do not work for local volumes.

These examples assume that the current drive is D:

Adobe Creative Suite 2

Bridge JavaScript Reference Using File and Folder Objects 59
URI path name Windows path name
/c/dir/file c:\dir\file
/remote/dir/file D:\remote\dir\file
/root/dir/file D:\root\dir\file
~/dir/file C:\Documents and Settings\jdoe\dir\file

When you access an alias, the operation is transparently forwarded to the real file. The only operations that
affect the alias are calls to rename and remove, and setting properties readonly and hidden. When a
File object represents an alias, the alias property of the object returns t rue, and the resolve
method returns the File or Folder object for the target of the alias.

In Windows, all file system aliases (called shortcuts) are actual files whose names end with the extension
. 1nk. Never use this extension directly; the File and Folder objects work without it.

For example, suppose there is a shortcut to the file /folderl/some. txt in the folder /folder2.The
full Windows file name of the shortcut file is \ folder2\some. txt . lnk.

To access the shortcut from a File object, specify the path /folder2/some. txt. Callingthat File
object’s open method opens the linked file (in /folder1). Calling the File object’s rename method
renames the shortcut file itself (leaving the . 1nk extension intact).

However, Windows permits a file and its shortcut to reside in the same folder. In this case, the File object
always accesses the original file. You cannot create a File object to access the shortcut when it is in the
same folder as its linked file.

A script can create a file alias by creating a File object for a file that does not yet exist on disk, and using
its createAlias method to specify the target of the alias.

If your application will run on multiple platforms, use relative path names, or try to originate path names
from the home directory. If that is not possible, work with Mac OS X and UNIX aliases, and store your files
on a machine that is remote to your Windows machine so that you can use UNC names.

As an example, suppose you use the UNIX machine myServer for data storage. If you set up an alias share
in the root directory of myServer, and if you set up a Windows-accessible share at share pointing to the
same data location, the path name //myServer/share/file would work for all three platforms.

When doing file I/0, Adobe applications convert 8-bit character encoding to Unicode. By default, this
conversion process assumes that the system encoding is used (code page 1252 in Windows or Mac Roman
in Mac OS). The encoding property of a File object returns the current encoding. You can set the
encoding property to the name of the desired encoding. The File object looks for the corresponding
encoder in the operating system to use for subsequent I/O. The name is one of the standard Internet
names that are used to describe the encoding of HTML files, such as ASCII,X-SJIS, or ISO-8859-1. For
a complete list, see File and Folder Supported Encoding Names.

Adobe Creative Suite 2
Bridge JavaScript Reference Using File and Folder Objects 60

A special encoder, BINARY, is provided for binary I/0. This encoder simply extends every 8-bit character it
finds to a Unicode character between 0 and 255. When using this encoder to write binary files, the encoder
writes the lower 8 bits of the Unicode character. For example, to write the Unicode character 1000, which
is 0x3E8, the encoder actually writes the character 232 (OxE8).

The data of some of the common file formats (UCS-2, UCS-4, UTF-8, UTF-16) starts with a special byte order
mark (BOM) character (\uFEFF). The File.open method reads a few bytes of a file looking for this
character. If it is found, the corresponding encoding is set automatically and the character is skipped. If
there is no BOM character at the beginning of the file, open () reads the first 2 KB of the file and checks
whether the data might be valid UTF-8 encoded data, and if so, sets the encoding to UTF-8.

To write 16-bit Unicode files in UTF-16 format, use the encoding UCS-2. This encoding uses whatever
byte-order format the host platform supports.

When using UTF-8 encoding or 16-bit Unicode, always write the BOM character "\uFEFF" as the first
character of the file.

Each object has an error property. If accessing a property or calling a method causes an error, this
property contains a message describing the type of the error. On success, the property contains the empty
string. You can set the property, but setting it only causes the error message to be cleared. If a file is open,
assigning an arbitrary value to the property also resets its error flag.

For a complete list of supported error messages, see File and Folder Error Messages.

Using ScriptUI

ScriptUl is a component that works with the ExtendScript JavaScript interpreter to provide JavaScript
programs with the ability to create and interact with user interface elements. It provides an object model
for windows and Ul control elements within an Adobe Creative Suite 2 application. ScriptUl objects are
available to JavaScript scripts for the following applications:

e Adobe Photoshop CS2
e Adobe Bridge CS2
Note: Adobe GolLive® CS2 SDK includes another version of these objects, which have diverged somewhat

in usage and functionality. See the Adobe GoLive CS SDK Programmer’s Guide and Adobe GoLive CS
SDK Programmer’s Reference for details.

This chapter describe how to work with these objects, and Chapter 8, “ScriptUl Object Reference,'
provides the details of the objects with their properties, methods, and creation parameters.

ScriptUl defines window objects that represent platform-specific windows, and various control elements
such as Button and StaticText, that represent user-interface controls. These objects share a common
set of properties and methods that allow you to query the type, move the element around, set the title,

caption or content, and so on. Many element types also have properties unique to that class of elements.

ScriptUl defines the following types of windows:
e Modal dialog boxes: not resizeable, holds focus when shown.

e Floating palettes: also called modeless dialogs, not resizeable. (Photoshop CS2 does not support script
creation of palette windows.)

e Main windows: resizeable, suitable for use as an application's main window. (Main windows are not
normally created by script developers for Adobe Creative Suite 2 applications. Photoshop CS2 does not
support script creation of main windows.)

To create a new window, use the Window constructor function. The constructor takes the desired type of
the window. The type is "dialog" for a modal dialog, or "palette" for a modeless dialog or floating
palette. You can supply optional arguments to specify an initial window title and bounds.

The following example creates an empty dialog with the variable name d1g, which is used in subsequent
examples:

// Create an empty dialog window near the upper left of the screen
var dlg = new Window('dialog', 'Alert Box Builder', [100,100,480,490]);

61

Adobe Creative Suite 2
Bridge JavaScript Reference Using ScriptUl 62

Newly created windows are initially hidden; the show method makes them visible and responsive to user
interaction. For example:

dlg.show () ;

All windows are containers—that is, they contain other elements within their bounds. Within a Window,
you can create other types of container elements: Panels and Groups. These can contain control
elements, and can also contain other Panel and Group containers. However, a Window cannot be added
to any container.

e AGroup is the simplest container used to visually organize related controls. You would typically define
a group and populate it with related elements, for instance an edittext box and its descriptive
statictext label.

e APanel isaframe object, also typically used to visually organize related controls. It has a text property
to specify a title, and can have a border to visually separate the collection of elements from other
elements of a dialog.

You might create a Panel and populate it with several Groups, each with their own elements. You can
create nested containers, with different layout properties for different containers, in order to define a
relatively complex layout without any explicit placement.

You can add elements to any container using the add method (see Adding elements to containers). An
element added to a container is considered a child of that container. Certain operations on a container
apply to its children; for example, when you hide a container, its children are also hidden.

When a script creates a Window and adds various Ul elements to it, the locations and sizes of elements and
spacing between elements is known as the layout of the window. Each Ul element has properties which
define its location and dimensions: 1ocation, size, and bounds. These properties are initially
undefined, and a script that employs Automatic Layout should leave them undefined for the main window
as well as its contained elements, allowing the automatic layout mechanism to set their values.

Your script can access these values, and (if not using auto-layout) set them as follows:

e The location of a window is defined by a Point object containing a pair of coordinates (x and y) for
the top left corner (the origin), specified in the screen coordinate system. The 1ocat ion of an element
within a window or other container is defined as the origin point specified in the container’s coordinate
system. That is, the x and y values are relative to the origin of the container.

The following examples show equivalent ways of placing the content region of an existing window at
screen coordinates [10, 50]:

win.location = [10, 50];
win.location = {x:10, y:50};
win.location = "x:10, y:50";

Adobe Creative Suite 2

Bridge JavaScript Reference Using ScriptUl 63

e The size of an element’s region is defined by a Dimension object containing a width and height in

pixels.

The following examples show equivalent ways of changing an existing window's width and height to
200 and 100:

win.size = [200, 100];
win.size = {width:200, height:100};
win.size = "width:200, height:100";

This example shows how to change a window's height to 100, leaving its location and width
unchanged:

win.size.height = 100;

The bounds of an element are defined by a Bounds object containing both the origin point (%, y) and
size (width, height) To define the size and location of windows and controls in one step, use the
bounds property.

The value of the bounds property can be a string with appropriate contents, an inline JavaScript
Bounds object, or a four-element array. The following examples show equivalent ways of placing a 380
by 390 pixel window near the upper left corner of the screen:

var dlg = new Window('dialog', 'Alert Box Builder', [100,100,480,490]);
dlg.bounds = [100,100,480,490];

dlg.bounds = {x:100, y:100, width:380, height:390};

dlg.bounds {left:100, top:100, right:480, bottom:490};

dlg.bounds = "left:100, top:100, right:480, bottom:490";

The window dimensions define the size of the content region of the window, or that portion of the window
that a script can directly control. The actual window size is typically larger, because the host platform’s
window system typically adds title bars and borders. The bounds property for a Window refers only to its
content region. To determine the bounds of the frame surrounding the content region of a window, use
the Window Object’s frameBounds property.

To add elements to a window, panel, or group, use the container’s add method. This method accepts
the type of the element to be created and some optional parameters, depending on the element type. It
creates and returns an object of the specified type.

In additions to windows, ScriptUl defines the following user-interface elements and controls:

Panels (frames) and groups, to collect and organize other control types
Push buttons with text or icons, radio buttons, checkbox buttons
Static text or images, edit text

Progress bars, scrollbars, sliders

Lists, which include list boxes and drop-down (also called popup) lists. Each item in a list is a control of
type item, and the parent list's items property contains an array of child items. You can add list items
with the parent list's add method.

You can specify the initial size and position of any new element relative to the working area of the parent
container, in an optional bounds parameter. Different types of elements have different additional
parameters. For elements which display text, for example, you can specify the initial text. See the ScriptUI
Object Reference for details.

Adobe Creative Suite 2
Bridge JavaScript Reference Using ScriptUl 64

The order of optional parameters must be maintained. Use the value undefined for a parameter you do
not wish to set. For example, if you want to use automatic layout to determine the bounds, but still set the
title and text in a panel and button, the following creates Panel and But ton elements with an initial
text value, but no bounds value:

dlg.btnPnl = dlg.add('panel', undefined, 'Build it');
dlg.btnPnl.testBtn = dlg.btnPnl.add('button', undefined, 'Test');

Tip: This example creates a dynamic property, btnPnl, on the parent window object, which contains the
returned reference to the child control object. This is not required, but provides a useful way to access
your controls.

A new element is initially set to be visible, but it not shown unless its parent object is shown.

Some element types have attributes that can only be specified when the element is created. These are not
normal properties of the element, in that they cannot be changed during the element’s lifetime, and they
are only needed once. For these element types, you can supply an optional creation-properties argument
to the add method. This argument is an object with one or more properties that control aspects of the
element’s appearance, or special functions such as whether an edit text element is editable or read-only.
See Control object constructors for details.

All Ul elements have an optional creation property called name, which assigns a name for identifying that
element. For example, the following creates a new But ton element with the name 'ok”:

dlg.btnPnl.buildBtn =
dlg.btnPnl.add ('button', undefined, 'Build', {name:'ok'});

A reference to each element added to a container is appended to the container’s children property. You
can access the child elements through this array, using a 0-based index. For controls that are not
containers, the children collection is empty.

In this example, the msgPn1 panel was the first element created in d1g, so the script can access the panel
object at index 0 of the parent’s children property to set the text for the title:

var dlg = new Window('dialog', 'Alert Box Builder');
dlg.msgPnl = dlg.add('panel') ;
dlg.children[0] .text = 'Messages';

If you use a creation property to assign a name to a newly created element, you can access that child by its
name, either in the children array of its parent, or directly as a property of its parent. For example, the
Button in a previous example was named "ok", so it can be referenced as follows:

dlg.btnPnl.children['ok'] .text = "Build";
dlg.btnPnl.ok.text = "Build";

For list controls (type 1ist and dropdown), you can access the child list-item objects through the items
array.

Adobe Creative Suite 2
Bridge JavaScript Reference Using ScriptUl 65

To add elements to a window, panel, or group, use the container’s remove method. This method
accepts an object representing the element to be removed, or the name of the element, or the index of
the element in the container's children collection (see Accessing child elements).

The specified element is removed from view if it was currently visible, and it is no longer accessible from
the container or window. The results of any further references by a script to the object representing the
element are undefined.

To remove list items from a list, use the parent list control’s remove method in the same way. It removes
the item from the parent’s i tems list, hides it from view, and deletes the item object.

The following sections introduce the types of controls you can add to a Window or other container
element (panel or group). For details of the properties and functions, and of how to create each type of
element, see ScriptUl Object Reference.

These are types of Control Objects which are contained in windows, and which contain and group other

controls.
Panel Typically used to visually organize related controls.
e Setthe text property to define a title which appears at the top of the panel.
e An optional borderstyle creation property controls the appearance of the border
drawn around the panel.
You can use Panels as separators: those with width = 0 appear as vertical lines and
those with height = 0appear as horizontal lines.
var dlg = new Window('dialog', 'Alert Box Builder', [100,100,480,245]);
dlg.msgPnl = dlg.add('panel', [25,15,355,130], 'Messages');
Group Used to visually organize related controls. Unlike panels, Groups have no title or

visible border. You can use them to create hierarchies of controls, and for fine control
over layout attributes of certain groups of controls within a larger panel. For
examples, see Creating more complex arrangements.

These are types of Control Objects which are contained in windows, panels, and groups, and which
provide specific kinds of display and user interaction.

Adobe Creative Suite 2
Bridge JavaScript Reference Using ScriptUl 66

StaticText Typically used to display text strings that are not intended for direct manipulation by
a user, such as informative messages or labels.

This example creates a panel and adds several staticText elements:

var dlg = new Window('dialog', 'Alert Box Builder', [100,100,480,245]);
dlg.msgPnl = dlg.add('panel', [25,15,355,130], 'Messages');
dlg.msgPnl.titleSt = dlg.msgPnl.add('statictext', [15,15,105,35],
'Alert box title:');
dlg.msgPnl.msgSt = dlg.msgPnl.add('statictext', [15,65,105,85],
'Alert message:');
dlg.show() ;

EditText Allows users to enter text, which is returned to the script when the dialog is
dismissed. Text in EditText elements can be selected, copied, and pasted.

e Setthe text property to assign the initial displayed text in the element, and read it
to obtain the current text value, as entered or modified by the user.

e Setthe textselection property to replace the current selection with new text, or
to insert text at the cursor (insertion point). Read this property to obtain the
current selection, if any.

This example adds some EditText elements, with initial values that a user can accept
or replace:

var dlg = new Window('dialog', 'Alert Box Builder', [100,100,480,245]);

dlg.msgPnl = dlg.add('panel', [25,15,355,130], 'Messages');

dlg.msgPnl.titleSt = dlg.msgPnl.add('statictext', [15,15,105,35],
'Alert box title:');

dlg.msgPnl.titleEt = dlg.msgPnl.add('edittext', [115,15,315,35],
'Sample Alert');

dlg.msgPnl.msgSt =
'Alert message:');

dlg.msgPnl.msgEt = dlg.msgPnl.add('edittext', [115,45,315,105],
'<your message here>', {multiline:true});

dlg.show() ;

Note the creation property on the second EditText field, where multiline:true
indicates a field in which a long text string can be entered. The text wraps to appear
as multiple lines.

dlg.msgPnl.add('statictext', [15,65,105,85],

Button Typically used to initiate some action from a window when a user clicks the button;
for example, accepting a dialog's current settings, canceling a dialog, bringing up a
new dialog, and so on.

e Setthe text property to assign a label to identify a Button's function.
e The onClick callback method provides behavior.

var dlg = new Window('dialog', 'Alert Box Builder', [100,100,480,245]);

dlg.btnPnl = dlg.add('panel', [15,50,365,95], 'Build it');

dlg.btnPnl.testBtn = dlg.btnPnl.add('button', [15,15,115,35], 'Test'):;

dlg.btnPnl.buildBtn = dlg.btnPnl.add('button', [125,15,225,35],
'Build', {name:'ok'});

dlg.btnPnl.cancelBtn = dlg.btnPnl.add('button', [235,15,335,35],
'Cancel', {name:'cancel'});

dlg.show() ;

IconButton A button that displays an icon instead of text. Like a text button, typically initiates an
action in response to a click.

e The icon property identifies the icon image; see Displaying icons.

e The onClick callback method provides behavior.

Bridge JavaScript Reference

Adobe Creative Suite 2
Using ScriptUl 67

Image

Checkbox

RadioButton

Progressbar

Slider

Displays an iconic image.
e The icon property identifies the icon image; see Displaying icons.

Allows the user to set a boolean state.

e Setthe text property to assign an identifying text string that appears next to the
clickable box.

e The user can click to select or deselect the box, which shows a checkmark when
selected. The value=true when it is selected (checked) and false whenitis not.

When you create a Checkbox, you can set its value property to specify its initial state
and appearance.

// Add a checkbox to control the buttons that dismiss an alert box
dlg.hasBtnsCb = dlg.add('checkbox', [125,145,255,165],

'Should there be alert buttons?');
dlg.hasBtnsCb.value = true;

Allows the user to select one choice among several.

e Setthe text property to assign an identifying text string that appears next to the
clickable button.

e The value=true when the button is selected. The button shows the state in a
platform-specific manner, with a filled or empty dot, for example.

You group a related set of radio buttons by creating all the related elements one after
another. When any button's value becomes true, the value of all other buttons in the
group becomes false. When you create a group of radio buttons, you should set the
state of one of them true:

var dlg = new Window('dialog', 'Alert Box Builder', [100,100,480,245]);

dlg.alertBtnsPnl = dlg.add('panel', [45,50,335,95], 'Button alignment');

dlg.alertBtnsPnl.alignLeftRb = dlg.alertBtnsPnl.add('radiobutton',
[15,15,95,35], 'Left');

dlg.alertBtnsPnl.alignCenterRb = dlg.alertBtnsPnl.add('radiobutton',
[105,15,185,35], 'Center');

dlg.alertBtnsPnl.alignRightRb = dlg.alertBtnsPnl.add('radiobutton',
[195,15,275,35], 'Right');

dlg.alertBtnsPnl.alignCenterRb.value = true;

dlg.show() ;

Typically used to display the progress of a time-consuming operation. A colored bar
covers a percentage of the area of the control, representing the percentage
completion of the operation. The value property reflects and controls how much of
the visible area is colored, relative to the maximum value (maxvalue). By default the
range is 0 to 100, so the value=50 when the operation is half done.

Typically used to select within a range of values. The slider is a horizontal bar with a
draggable indicator, and you can click a point on the slider bar to jump the indicator
to that location. The value property reflects and controls the position of the indicator,
within the range determined by minvalue and maxvalue. By default the range is 0 to
100, so setting value=50 moves the indicator to the middle of the bar.

Bridge JavaScript Reference

Adobe Creative Suite 2
Using ScriptUl 68

Scrollbar

ListBox
DropDownList

ListItem

Like a slider, the scrollbar is a bar with a draggable indicator. It also has "stepper"
buttons at each end, that you can click to jump the indicator by the amount in the
stepdelta property. If you click a point on the bar outside the indicator, the indicator
jumps by the amount in the jumpdelta property.

You can create scrollbars with horizontal or vertical orientation; if width is greater
than height, it is horizontal, otherwise it is vertical.

Scrollbars are often created with an associated Edi tText field to display the current
value of the scrollbar, and to allow setting the scrollbar's position to a specific value.
This example creates a scrollbar with associated staticText and EditText elements
within a panel:

dlg.sizePnl = dlg.add('panel', [60,240,320,315], 'Dimensions');

dlg.sizePnl.widthSt = dlg.sizePnl.add('statictext', [15,15,65,35],

'Width: ") ;
dlg.sizePnl.widthScrl = dlg.sizePnl.add('scrollbar', [75,15,195,35],

300, 300, 800);
dlg.sizePnl.widthEt = dlg.sizePnl.add('edittext', [205,15,245,35]);

The last three arguments to the add method that creates the scrollbar define the
values for the value, minvalue and maxvalue properties.

These controls display lists of items, which are represented by ListTtemobjects in the
items property. You can access the items in this array using a 0-based index.

e A ListBox control displays a list of choices. When you create the object, you
specify whether it allows the user to select only one or multiple items. If a list
contains more items than can be displayed in the available area, a scrollbar may
appear that allows the user to scroll through all the list items.

e A DropbhownList control displays a single visible item. When you click the control, a
list drops down and allows you to select one of the other items in the list.
Drop-down lists can have nonselectable separator items for visually separating
groups of related items, as in a menu.

You can specify the choice items on creation of the list object, or afterward using the
list object’s add method. You can remove items programmatically with the list
object’s remove and removeAll method.

Items added to or inserted into any type of list control are List Item objects, with
properties that can be manipulated from a script. Li st Item elements can be of the
following types:

e item:the typical item in any type of list. It displays text or an icon, and can be
selected. To display an icon, set the item object’s icon property; see Displaying
icons.

e separator:a separatoris a nonselectable visual element in a drop-down list.
Although it has a text property, the value is ignored, and the item is displayed as a
horizontal line.

You can display icon images in Image or IconButton controls, or in place of strings as the selectable items
in a Listbox or DropdownlList control. In each case, the image is defined by setting the element's icon
property, either to a named icon resource, a File Object, or the pathname of a file containing the iconic

image (see Specifying Paths).

Adobe Creative Suite 2
Bridge JavaScript Reference Using ScriptUl 69

The image data for an icon must be in Portable Network Graphics (PNG) format. See
http://www.libpng.org for detailed information on the PNG format.

You can set or reset the icon property at any time to change the image displayed in the element.

The scripting environment can define icon resources, which are available to scripts by name. To specify an
icon resource, set a control’s icon property to the resource’s JavaScript name, or refer to the resource by
name when creating the control. For example, to create a button with an application-defined icon
resource:

myWin.upBtn = myWin.add ("iconbutton", undefined, "SourceFolderIcon") ;

If a script does not explicitly set the preferredSize or size property of an element that displays a icon
image, the value of preferredSize is determined by the dimensions of the iconic image. If the size
values are explicitly set to dimensions smaller than those of the actual image graphic, the displayed image
is clipped. If they are set to dimensions larger than those of the image graphic, the displayed image is
centered in the larger space. An image is never scaled to fit the available space.

Static functions on the Window Class are globally available to display short messages in standard dialogs.
The host application controls the appearance of these simple dialogs, so they are consistent with other
alert and message boxes displayed by the application. You can often use these standard dialogs for simple
interactions with your users, rather than designing special-purpose dialogs of your own.

Use the static functions alert, confirm, and prompt on the Window class to invoke these dialogs with your
own messages. You do not need to create a window object to call these functions.

A modal dialog is initially invisible. Your script invokes it using the show method, which does not return
until the dialog has been dismissed. The user can dismiss it by using a platform-specific window gesture,
or by using one of the dialog controls that you supply, typically an OK or Cancel button. The onClick
method of such a button must call the close or hide method to close the dialog. The c1ose method allows
you to pass a value to be returned by the show method.

For an example of how to define such buttons and their behavior, see Defining Behavior for Controls with
Event Callbacks.

A dialog typically contains some controls that the user must interact with, to make selections or enter
values that your script will use. In some cases, the result of the user action is stored in the object, and you
can retrieve it after the dialog has been dismissed. For example, if the user changes the state of a
Checkbox or RadioButton, the new state is found in the control’s value property.

However, if you need to respond to a user action while the dialog is still active, you must assign the control
a callback function for the interaction event, either onClick or onChange. The callback function is the value
of the onClick or onChange property of the control.

For example, if you need to validate a value that the user enters in a edittext control, you can do soin an
onChange callback handler function for that control. The callback can perform the validation, and
perhaps display an alert to inform the user of errors.

http://www.libpng.org

Adobe Creative Suite 2
Bridge JavaScript Reference Using ScriptUl 70

Sometimes, a modal dialog presents choices to the user that must be correct before your script allows the
dialog to be dismissed. If your script needs to validate the state of a dialog after the user clicks OK, you can
define an onClose event handler for the dialog. This callback function is invoked whenever a window is
closed. If the function returns t rue, the window is closed, but if it returns false, the close operation is
cancelled and the window remains open.

Your onClose handler can examine the states of any controls in the dialog to determine their correctness,
and can show alert messages or use other modal dialogs to alert the user to any errors that must be
corrected. It can then return true to allow the dialog to be dismissed, or false to allow the user to
correct any errors.

Every modal dialog should have at least one button that the user can click to dismiss the dialog. Typically
modal dialogs have an OK and a Cancel button to close the dialog with or without accepting changes that
were made in it.

You can define onClick callbacks for the buttons that close the parent dialog by calling its close method.
You have the option of sending a value to the close method, which is in turn passed on to and returned
from the show method that invoked the dialog. This return value allows your script to distinguish different
closing events; for example, clicking OK can return 1, clicking Cancel can return 2. However, for this typical
behavior, you do not need to define these callbacks explicitly; see Default and cancel elements below.

For some dialogs, such as a simple alert with only an OK button, you do not need to return any value. For
more complex dialogs with several possible user actions, you might need to distinguish more outcomes. If
you need to distinguish more than two closing states, you must define your own closing callbacks rather
than relying on the default behavior.

If, by mistake, you create a modal dialog with no buttons to dismiss it, or if your dialog does have buttons,
but their onC1ick handlers do not function properly, a user can still dismiss the dialog by typing Esc. In
this case, the system will execute a call to the dialog’s c1ose method, passing a value of 2. This is not, of
course, a recommended way to design your dialogs, but is provided as an escape hatch to prevent the
application from hanging in case of an error in the operations of your dialog.

The user can typically dismiss a modal dialog by clicking an OK or Cancel button, or by typing certain
keyboard shortcuts. By convention, typing ENTER is the same as clicking OK or the default button, and
typing Esc is the same as clicking Cancel. The keyboard shortcut has the same effect as calling notify for
the associated but ton control.

To determine which control is notified by which keyboard shortcut, set the dialog object’s
defaultElement and cancelElement properties. The value is the control object that should be notified
when the user types the associated keyboard shortcut.

e For buttons assigned as the defaul tElement, if there is no onC1ick handler associated with the
button, clicking the button or typing ENTER calls the parent dialog’s close method, passing a value of 1
to be returned by the show call that opened the dialog.

e For buttons assigned as the cancelElement, if there is no onC1ick handler associated with the
button, clicking the button or typing Esc calls the parent dialog’s close method, passing a value of 2 to
be returned by the show call that opened the dialog.

Adobe Creative Suite 2
Bridge JavaScript Reference Using ScriptUl 71

If you do not set the defaultElement and cancelElement properties explicitly, ScriptUl tries to
choose reasonable defaults when the dialog is about to be shown for the first time. For the default
element, it looks for a button whose name or text value is "ok" (disregarding case). For the cancel
element, it looks for a button whose name or text value is "cancel" (disregarding case). Because it looks
at the name value first, this works even if the text value is localized. If there is no suitable button in the
dialog, the property value remains null, which means that the keyboard shortcut has no effect in that
dialog.

To make this feature most useful, it is recommended that you always provide the name creation property
for buttons meant to be used in this way.

You can create one or more Ul elements at a time using a resource specification. This specially formatted
string provides a simple and compact means of creating an element, including any container element and
its component elements. The resource-specification string is passed as the type parameter to the
Window () oradd () constructor function.

The general structure of a resource specification is an element type specification (such as dialog),
followed by a set of braces enclosing one or more property definitions.

var myResource = "dialog{ control specs }";
var myDialog = new Window (myResource) ;

Controls are defined as properties within windows and other containers. For each control, give the class
name of the control, followed by the properties of the control enclosed in braces. For example, the
following specifies a But ton:

testBtn: Button { text: 'Test' }

The following resource string specifies a panel that contains several StaticText and EditText
controls:

"msgPnl: Panel { text: 'Messages', bounds: [25,15,355,130], \
titleSt: StaticText { text:'Alert box title:', \
bounds: [15,15,105,35] }, \
titleEt: EditText { text:'Sample Alert', bounds:[115,15,315,35] }, \
msgSt: StaticText { text:'Alert message:', \
bounds: [15,65,105,85] }, \
msgEt: EditText { text:'<your message here>', \
bounds: [115,45,315,105], properties:{multiline:true} } \
}n

The property with name properties specifies creation properties; see Creation properties.

A property value can be specified as nul1, true, false, a string, a number, an inline array, or an object.
e Aninline array contains one or more values in the form:
[value, value,...]
e Anobject can be an inline object, or a named object, in the form:
{classname inlineObject}
e Aninline object contains one or more properties, in the form:

{propertyName:propertyvalue,propertyName:propertyvalue,... }

Adobe Creative Suite 2
Bridge JavaScript Reference Using ScriptUl 72

The Resource specification example shows how to build a complete window and all its contents with a
resource specification. The resource specification format can also be used to create a single element or
container and its child elements. For example, if the alertBuilderResource in Resource specification
example did not contain the panel btnPnlResource, you could define that resource separately, then
add it to the dialog as follows:

var btnPnlResource =
"panel { text: 'Build it', bounds:[15,330,365,375], \
testBtn: Button { text:'Test', bounds:[15,15,115,35] }, \
buildBtn: Button { text:'Build', bounds: [125,15,225,35], \
properties:{name:'ok'} }, \
cancelBtn: Button { text:'Cancel', bounds: [235,15,335,35], \
properties:{name:'cancel'} } \
}n’.
dlg = new Window (alertBuilderResource) ;
dlg.btnPnl = dlg.add (btnPnlResource) ;
dlg.show () ;

Adobe Creative Suite 2
Bridge JavaScript Reference Using ScriptUl 73

You must define the behavior of your controls in order for them to respond to user interaction. You do this
by defining event-handling callback functions as part of the definition of the control or window. To
respond to a specific event, define a handler function for it, and assign a reference to that function in the
corresponding property of the window or control object. Different types of windows and controls respond
to different actions, or events:

e Windows generate events when the user moves or resizes the window. To handle these events, define
callback functions for onMove, onMoving, onResize, and onResizing. To respond to the user opening or
closing the window, define callback functions for onShow and onClose.

e Button, radiobutton, and checkbox controls generate events when the user clicks within the control
bounds. To handle the event, define a callback function for onClick.

e Edittext, scrollbar, and slider controls generate events when the content or value changes—that is,
when the user types into an edit field, or moves the scroll or slider indicator. To handle these events,
define callback functions for onChange and onChanging.

Your script can define an event handler as a named function referenced by the callback property, or as an
unnamed function defined inline in the callback property.

e Ifyou define a named function, assign its name as the value of the corresponding callback property. For
example:

function hasBtnsCbOnClick { /* do something interesting */ }
hasBtnsCb.onClick = hasBtnsCbOnClick;

e For asimple, unnamed function, set the property value directly to the function definition:

UI element.callback name = function () { handler definition};
Event-handler functions take no arguments.

For example, the following sets the onC11ick property of the checkbox hasBtnsCb, to a function that
enables another control in the same dialog:

hasBtnsCb.onClick = function ()
{ this.parent.alertBtnsPnl.enabled = this.value; };

The following statements set the onC1ick event handlers for buttons that close the containing dialog,
returning different values to the show method that invoked the dialog, so that the calling script can tell
which button was clicked:

buildBtn.onClick = function () { this.parent.parent.close(1l); };
cancelBtn.onClick = function () { this.parent.parent.close(2); };

You can simulate user actions by sending an event notification directly to a window or control with the
notify method. A script can use this method to generate events in the controls of a window, as if a user
was clicking buttons, entering text, or moving the window. If you have defined an event-handler callback
for the element, the not i £y method invokes it.

The not i fy method takes an optional argument that specifies which event it should simulate. If a control
can generate only one kind of event, notification generates that event by default.

Adobe Creative Suite 2
Bridge JavaScript Reference Using ScriptUl 74

The following controls generate the onClick event:

button
checkbox
iconbutton
radiobutton

The following controls generate the onChange event:

dropdownlist
edittext
listbox
scrollbar
slider

The following controls generate the onChanging event:

edittext
scrollbar
slider

In radiobutton and checkbox controls, the boolean value property automatically changes when the
user clicks the control. If you use not i fy () to simulate a click, the value changes just as if the user had

clicked. For example, if the value of a checkbox hasBtnsCb is t rue, this code changes the value to
false:

if (dlg.hasBtnsCb.value == true) dlg.hasBtnsCb.notify () ;
// dlg.hasBtnsCb.value is now false

Adobe Creative Suite 2
Bridge JavaScript Reference Using ScriptUl 75

When a script creates a window and its associated Ul elements, it can explicitly control the size and
location of each element and of the container elements, or it can take advantage of the automatic layout
capability provided by ScriptUl. The automatic layout mechanism uses certain available information about
Ul elements, along with a set of layout rules, to establish a visually pleasing layout of the controlsin a
dialog, automatically determining the proper sizes for elements and containers.

Automatic layout is easier to program than explicit layout. It makes a script easier to modify and maintain,
and it also makes the script easier to localize for different languages.

The script programmer has considerable control over the automatic layout process. Each container has an
associated layout manager object, specified in the 1ayout property. The layout manager controls the
sizes and positions of the contained elements, and also sizes the container itself.

There is a default layout manager object, or you can create a new one:

myWin.layout = new AutoLayoutManager (myWin) ;

By default, the autoLayoutManager object implements the default layout behavior. A script can modify
the properties of the default layout manager object, or create a new, custom layout manager if it needs
more specialized layout behavior. See Custom layout manager example.

Child elements of a container can be organized in a single row or column, or in a stack, where the elements
overlap one other in the same region of the container, and only the top element is fully visible. This is
controlled by the container’s orientation property, which can have the value row, column, or stack.

You can nest Panel and Group containers to create more complex organizations. For example, to display
two columns of controls, you can create a panel with a row orientation that in turn contains two groups,
each with a column orientation.

Containers have properties to control inter-element spacing and margins within their edges. The layout
manager provides defaults if these are not set.

The alignment of child elements within a container is controlled by the alignChildren property of the
container, and the alignment property of the individual controls. The alignChildren property
determines an overall strategy for the container, which can be overridden by a particular child element’s
alignment value.

A layout manager can determine the best size for a child element through the element’s preferredsize
property. The value defaults to dimensions determined by the Ul framework based on characteristics of
the control type and variable characteristics such as a displayed text string.

For details of how you can set these property values to affect the automatic layout, see Automatic layout
properties.

Note: ScriptUl does not offer direct control of fonts, and fonts are chosen differently on different
platforms, so windows that are created the same way can appear different on different platforms.

Adobe Creative Suite 2
Bridge JavaScript Reference Using ScriptUl 76

Your script establishes rules for the layout manager by setting the values of certain properties, both in the
container object and in the child elements. The following examples show the effects of various
combinations of values for these properties. The examples are based on a simple window containing a
StaticText, Button and EditText element, created (using Resource Specifications) as follows:

var w = new Window (
"window { \
orientation: 'row', \
st: StaticText { }, \
pb: Button { text: 'OK' }, \
et: EditText { size:[20, 30] } \
bmy;

w.show () ;

Each example shows the effects of setting particular layout properties in various ways. In each window, w.
text is set so that the window title shows which property is being varied, and w. st . text is set to display
the particular property value being demonstrated.

The orientation property of a container specifies the organization of child elements within it. It can
have these values:

e row: Child elements are arranged next to each other, in a single row from left to right across the
container. The height of the container is based on the height of the tallest child element in the row, and
the width of the container is based on the combined widths of all the child elements.

e column: Child elements are arranged above and below each other, in a single column from top to
bottom across the container. The height of the container is based on the combined heights of all the
child elements, and the width of the container is based on the widest child element in the column.

e stack: Child elements are arranged overlapping one another, as in a stack of papers. The elements
overlie one another in the same region of the container. Only the top element is fully visible. The height
of the container is based on the height of the tallest child element in the stack, and the width of the
container is based on the widest child element in the stack.

The following figure shows the results of laying out the sample window with each of these orientations:

een orientation
— & O 7 orientation
orientation=row | OK]
— orientation=column
® © O orientation [OK)

orientation=stack

The alignment of child elements within a container is controlled by two properties: alignChildrenin
the parent container, and alignment in each child. The alignChildren value in the parent container
controls the alignment of all children within that container, unless it is overridden by the al ignment
value set on an individual child element.

Adobe Creative Suite 2

Bridge JavaScript Reference Using ScriptUl 77

These properties use the same values, which specify alignment along one axis, depending on the
orientation of the container. The property values are not case-sensitive; for example, the strings FILL,
Fill,and £i11 are all valid.

Elements in a row can be aligned along the vertical axis, in these ways:

top: The element's top edge is located at the top margin of its container.
bottom: The element's bottom edge is located at the bottom margin of its container.
center: The element is centered within the top and bottom margins of its container.

£i11:The element’s height is adjusted to fill the height of the container between the top and bottom
margins.

Elements in a column can be aligned along the horizontal axis, in these ways:

left:The element’s left edge is located at the left margin of its container.
right: The element's right edge is located at the right margin of its container.
center: The element is centered within the right and left margins of its container.

£1i11:The element’s width is adjusted to fill the width of the container between the right and left
margins.

Elements in a stack can be aligned along either the vertical or the horizontal axis, in these ways:

top: The element's top edge is located at the top margin of its container, and the element is centered
within the right and left margins of its container.

bot tom: The element's bottom edge is located at the bottom margin of its container, and the element
is centered within the right and left margins of its container.

left:The element’s left edge is located at the left margin of its container, and the element is centered
within the top and bottom margins of its container.

right: The element's right edge is located at the right margin of its container, and the element is
centered within the top and bottom margins of its container.

center: The element is centered within the top, bottom, right and left margins of its container.

£i11:The element’s height is adjusted to fill the height of the container between the top and bottom
margins., and the element’s width is adjusted to fill the width of the container between the right and
left margins.

The following figure shows the results of creating the sample window with row orientation and the
bottomand top alignment settings in the parent’s alignChildren property:

alignChildren=hottom (oK)

8eon alignChildren ©® O © alignChildren

alignChildren=top (oK

Adobe Creative Suite 2
Bridge JavaScript Reference Using ScriptUl 78

The following figure shows the results of creating the sample window with column orientation and the
right, left,and £i11 alignment settings in the parent’s alignChildren property. Notice how in the
£111 case, each element is made as wide as the widest element in the container:

® © O alignChild... ® O O alignChild... & © O alignChil...
alignChildren=right alignChildren=left alignChildren=fill
(0K) € oK] (0K]

You can override the container's child alignment, as specified by alignChildren, by setting the
alignment property of a particular child element. The following diagram shows the result of setting
alignment to right for the EditText element, when the parent’s alignChildren value is left:

& O) alignment=right

override alignChildren=left

The margins property of a container specifies the number of pixels between the edges of a container and
the outermost edges of the child elements. You can set this property to a simple number to specify equal
margins, or using a Margins object, which allows you to specify different margins for each edge of the
container.

The following figure shows the results of creating the sample window with row orientation and margins of
5 and 15 pixels:

& O O margins een margins
margins=5 | oK) arGiE=is oKk) 1

This figure shows the results of creating the sample window with column orientation, a top margin of 0
pixels, a bottom margin of 20 pixels, and left and right margins of 15 pixels:

® © M margins
margins=15,0,15,20

Adobe Creative Suite 2
Bridge JavaScript Reference Using ScriptUl 79

The spacing property of a container specifies the number of pixels separating one child element from its
adjacent sibling element.

This figure shows the results of creating the sample window with row orientation, and spacing of 15 and 5
pixels, respectively:

8fen spacing ® O ™ spacing

spacing=15 -._- oK "__. spacing=5 (0K)

This figure shows the results of creating the sample window with column orientation, and spacing of 20
pixels:

£8.0.0588..
spacing=20

{ OK b)

Each element has a preferredSize property, which is initially defined with reasonable default
dimensions for the element. The default value is calculated by ScriptUl, and is based on constant
characteristics of each type of element, and variable characteristics such as the text string to be displayed
in a button or text element.

If an element's size property is not defined, the layout manager uses the value of preferredsize to
determine the dimensions of each element during the layout process. Generally, you should avoid setting
the preferredsize property explicitly, and let ScriptUl determine the best value based on the state of
an element at layout time. This allows you to set the text properties of your Ul elements using localizable
strings (see Localization in ScriptUl Objects). The width and height of each element are calculated at
layout time based on the chosen language-specific text string, rather than relying on the script to specify a
fixed size for each element.

However, a script can explicitly set the preferredSize property to give hints to the layout manager
about the intended sizes of elements for which a reasonable default size is not easily determined, such as
an EditText element that has no initial text content to measure.

You can easily create more complex arrangements by nesting Group containers within Panel containers
and other Group containers.

Many dialogs consist of rows of information to be filled in, where each row has columns of related types of
controls. For instance, an edit field is typically in a row next to a static text label that identifies it, and a
series of such rows are arranged in a column. This example (created using Resource Specifications) shows
a simple dialog in which a user can enter information into two EditText fields, each arranged in a row

Adobe Creative Suite 2
Bridge JavaScript Reference Using ScriptUl 80

with its StaticText label. To create the layout, a Panel with a column orientation contains two Group
elements with row orientation. These groups contain the control rows. A third Group, outside the panel,
contains the row of buttons.

res =
"dialog { \
info: Panel { orientation: 'column', \
text: 'Personal Info', \
name: Group { orientation: 'row', \
s: StaticText { text:'Name:' }, \
e: EditText { preferredSize: [200, 20] } \
oA
addr: Group { orientation: 'row', \
s: StaticText { text:'Street / City:' }, \
e: EditText { preferredSize: [200, 20] } \
P
oA
buttons: Group { orientation: 'row', \
okBtn: Button { text:'OK', properties:{name:'ok'} }, \
cancelBtn: Button { text:'Cancel', properties:{name:'cancel'} } \
A
}n’.
win = new Window (res) ;
win.center () ;
win.show () ;

Personal Info

Name:

Street / City:

(— oK -) (" cancel)

In this simplest example, the columns are not vertically aligned. When you are using fixed-width controls
in your rows, a simple way to get an attractive alignment of the StaticText labels for your EditText
fields is to align the child rows in the Panel to the right of the panel. In the example, add the following to
the Panel specification:

info: Panel { orientation: 'column', alignChildren:'right', \

This creates the following result:

Personal Info

Name:

Street / City:

(—-6*-—) (" cancel)

Suppose now that you need two panels, and want each panel to have the same width in the dialog. You
can specify this at the level of the dialog window object, the parent of both panels. Specify
alignChildren='£1i11"', which makes each child of the dialog match its width to the widest child.

res =
"dialog { alignChildren: '£ill', \
info: Panel { orientation: 'column', alignChildren:'right', \

Adobe Creative Suite 2
Bridge JavaScript Reference Using ScriptUl 81

text: 'Personal Info', \
name: Group { orientation: 'row', \
s: StaticText { text:'Name:' }, \
e: EditText { preferredSize: [200, 20] } \
FA
oA
workInfo: Panel { orientation: 'column', \
text: 'Work Info', \
name: Group { orientation: 'row', \
s: StaticText { text:'Company name:' }, \
e: EditText { preferredSize: [200, 20] } \
FA
b
buttons: Group { orientation: 'row',6 alignment: 'right', \
okBtn: Button { text:'OK', properties:{name:'ok'} }, \
cancelBtn: Button { text:'Cancel', properties:{name:'cancel'} } \

P
I

win = new Window (res); win.center(); win.show() ;

Personal Info

Name:

Work Info
(Company name:

(—0&—) (" cancel)

To make the buttons to appear at the right of the dialog, the but tons group overrides the £111
alignment of its parent (the dialog), and specifies alignment="'right'.

Many dialogs need to present different sets of information based on the user selecting some option within
the dialog. You can use the stack orientation to present different views in the same region of a dialog.

A stack orientation of a container places child elements so they are centered in a space which is wide
enough to hold the widest child element, and tall enough to contain the tallest child element. If you
arrange groups or panels in such a stack, you can show and hide them in different combinations to display
a different set of controls in the same space, depending on other choices in the dialog.

For example, this dialog changes dynamically according to the user’s choice in the DropDownList.

Personal Info |3l Work Info |3l
Name: Company name:
(0K)r" Cancel) (oK) (" Cancel)

The following script creates this dialog. It compresses the "Personal Info" and "Work Info" panels from the
previous example into a single Panel that has two Groups arranged in a stack. A DropDownList allows
the user to choose which set of information to view. When the user makes a choice in the list, its onChange
function shows one group, and hides the other.

Adobe Creative Suite 2
Bridge JavaScript Reference Using ScriptUl 82

res =
"dialog { \
whichInfo: DropDownList { alignment:'left' }, \
allGroups: Panel { orientation:'stack', \
info: Group { orientation: 'column', \
name: Group { orientation: 'row', \
s: StaticText { text:'Name:' }, \
e: EditText { preferredSize: [200, 20] } \
FA
b
workInfo: Group { orientation: 'column', \
name: Group { orientation: 'row', \
s: StaticText { text:'Company name:' }, \
e: EditText { preferredSize: [200, 20] } \
FA
oA
oA
buttons: Group { orientation: 'row', alignment: 'right', \
okBtn: Button { text:'OK', properties:{name:'ok'} }, \
cancelBtn: Button { text:'Cancel',6 properties:{name:'cancel'} } \

P
}n’.
win = new Window (res) ;
win.whichInfo.onChange = function () {
if (this.selection != null) {
for (var g = 0; g < this.items.length; g++)
this.items[g] .group.visible = false; //hide all other groups
this.selection.group.visible = true;//show this group
}
}
var item = win.whichInfo.add ('item', 'Personal Info');
item.group = win.allGroups.info;
item = win.whichInfo.add ('item', 'Work Info');

item.group = win.allGroups.workInfo;
win.whichInfo.selection = win.whichInfo.items[0];
win.center () ;

win.show () ;

This script creates a dialog almost identical to the one in the previous example, except that it defines a
layout-manager subclass, and assigns an instance of this class as the 1ayout property for the last Group
in the dialog. (The example also demonstrates the technique for defining a reusable class in JavaScript.)

This script-defined layout manager positions elements in its container in a stair-step fashion, so that the
buttons are staggered rather than in a straight line.

Adobe Creative Suite 2
Bridge JavaScript Reference Using ScriptUl 83

Personal Info | :]

Name:

o)

{ Cancel)
e e

/* Define a custom layout manager that arranges the children
% of 'container' in a stair-step fashion./

function StairStepButtonLayout (container) { this.initSelf (container); }

// Define its 'method' functions
function SSBL initSelf (container) { this.container = container; }

function SSBL layout () ({
var top = 0, left = 0;
var width;
var vspacing = 10, hspacing = 20;
for (1 = 0; 1 < this.container.children.length; i++) {
var child = this.container.children([i];
if (typeof child.layout != "undefined")
// If child is a container, call its layout method
child.layout.layout () ;
child.size = child.preferredSize;
child.location = [left, topl];
width = left + child.size.width;
top += child.size.height + vspacing;
left += hspacing;
1

this.container.preferredSize = [width, top - vspacing];

}

// Attach methods to Object's prototype
StairStepButtonLayout.prototype.initSelf = SSBL initSelf;
StairStepButtonLayout.prototype.layout = SSBL layout;

// Define a string containing the resource specification for the controls
res =
"dialog { \
whichInfo: DropDownList { alignment:'left' }, \
allGroups: Panel { orientation:'stack', \
info: Group { orientation: 'column', \
name: Group { orientation: 'row', \
s: StaticText { text:'Name:' }, \
e: EditText { preferredSize: [200, 20] } \
FA
oA
workInfo: Group { orientation: 'column', \
name: Group { orientation: 'row', \
s: StaticText { text:'Company name:' }, \
e: EditText { preferredSize: [200, 20] } \

Adobe Creative Suite 2

Bridge JavaScript Reference Using ScriptUl 84
P
} 12 \
} ’ \

buttons: Group { orientation: 'row', alignment: 'right', \
okBtn: Button { text:'OK', properties:{name:'ok'} }, \
cancelBtn: Button { text:'Cancel', properties:{name:'cancel'} } \
}A
IR
// Create window using resource spec
win = new Window (res) ;
// Create list items, select first one
win.whichInfo.onChange = function () {
if (this.selection != null) {
for (var g = 0; g < this.items.length; g++)
this.items[g] .group.visible = false;
this.selection.group.visible = true;

var item = win.whichInfo.add ('item', 'Personal Info');
item.group = win.allGroups.info;
item = win.whichInfo.add ('item', 'Work Info');

item.group = win.allGroups.workInfo;
win.whichInfo.selection = win.whichInfo.items[0];

// Override the default layout manager for the 'buttons' group
// with custom layout manager
win.buttons.layout = new StairStepButtonlLayout (win.buttons) ;

win.center () ;
win.show() ;

When a script creates a window object and its elements and shows it the first time, the visible Ul-platform
window and controls are created. At this point, if no explicit placement of controls was specified by the
script, all the controls are located at [0, 0] within their containers, and have default dimensions. Before the
window is made visible, the layout manager’s 1ayout method is called to assign locations and sizes for all
the elements and their containers.

The default AutoLayoutManager's layout method performs these steps when invoked during the
initial call to a window object’s show method:

1. Read the bounds property for the managed container; if undefined, proceed with auto layout. If
defined, assume that the script has explicitly placed the elements in this container, and cancel the
layout operation (if both the 1location and size property have been set, this is equivalent to setting
the bounds property, and layout does not proceed).

2. Determine the container’s margins and inter-element spacing from its margins and spacing
properties, and the orientation and alignment of its child elements from the container's orientation
and alignChildren properties. If any of these properties are undefined, use default settings
obtained from platform and Ul framework-specific default values.

3. Enumerate the child elements, and for each child:

Adobe Creative Suite 2
Bridge JavaScript Reference Using ScriptUl 85

e If the child is a container, call its layout manager (that is, execute this entire algorithm again for the
container).

e Readits alignment property; if defined, override the default alignment established by the parent
container with its alignChildren property.

e Readits size property: if defined, use it to determine the child’s dimensions. If undefined, read its
preferredSize property to get the child’s dimensions. Ignore the child's 1ocat ion property.

All the per-child information is collected for later use.

4. Based on the orientation, calculate the trial location of each child in the row or column, using
inter-element spacing and the container’s margins.

5. Determine the column, row, or stack dimensions, based on the dimensions of the children.

6. Using the desired alignment for each child element, adjust its trial location relative to the edges of its
container. For stack orientation, center each child horizontally and vertically in its container.

7. Set the bounds property for each child element.

8. Set the container’s preferredsize property, based on the margins and dimensions of the row or
column of child elements.

The following restrictions apply to the automatic layout mechanism:

e The default layout manager does not attempt to lay out a container that has a defined bounds
property. The script programmer can override this behavior by defining a custom layout manager for
the container.

e Thelayout mechanism does not track changes to element sizes after the initial layout has occurred. The
script can initiate another layout by calling the layout manager’s 1ayout method, and can force the
manager to recalculate the sizes of all child containers by passing the optional argument as true.

e The layout mechanism does not support re-layout if a dialog window is resized.

Adobe Creative Suite 2
Bridge JavaScript Reference Using ScriptUl 86

These examples demonstrate two ways of building and populating a ScriptUI dialog. The first creates each
control with a separate add method, while the second defines a resource string that creates the control
hierarchy.

The two examples create the same dialog, which collects values from the user. When the Alert Box Builder
dialog is dismissed, the script builds a resource string from the collected values, and saves it to a file. That
resource string can later be used to create and display the user-configured alert box.

Alert Box Builder

— Messages
Alert box title: Sample Alert

<your message here>
Alert message:

Message width: 150

Message height: 20

E Has alert buttons?

— Button alignment
‘ CLeft @Cemer : Right

Build it
(Test) € Build) (Cancel)

This variation builds the dialog using the window and panel add methods to create each control.

/)= - Functions ------------- //

/* This function creates the builder dialog using the add method
** An alternative that uses a resource specification is shown

** in the following section */

function createBuilderDialog() {

// Create an empty dialog window near the upper left of the screen

var dlg = new Window('dialog', 'Alert Box Builder');

dlg.framelLocation = [100, 100];

// Add a panel to hold title and 'message text' strings

dlg.msgPnl = dlg.add('panel', undefined, 'Messages');

dlg.msgPnl.alignChildren = "right";

dlg.msgPnl.title = dlg.msgPnl.add('group') ;

dlg.msgPnl.msg = dlg.msgPnl.add('group') ;

dlg.msgPnl.msgWidth = dlg.msgPnl.add('group') ;

dlg.msgPnl.msgHeight = dlg.msgPnl.add('group') ;

with (dlg.msgPnl)
title.st = title.add('statictext', undefined, 'Alert box title:');
title.et = title.add('edittext', undefined, 'Sample Alert');
title.et.preferredSize = [200,20];

Adobe Creative Suite 2
Bridge JavaScript Reference Using ScriptUl 87

msg.st = msg.add('statictext', undefined, 'Alert message:');

msg.et msg.add ('edittext', undefined, '<your message heres>',
{multiline:true}) ;

msg.et.preferredSize = [200,60] ;

msgWidth.st = msgWidth.add ('statictext', undefined, 'Message width:');

msgWidth.sl = msgWidth.add('slider', undefined, 150, 100, 300);

msgWidth.sl.preferredSize = [150, 20];

msgWidth.et = msgWidth.add ('edittext') ;

msgWidth.et.preferredSize = [40, 20];

msgHeight.st = msgHeight.add ('statictext', undefined, 'Message height:');

msgHeight.sl msgHeight.add('slider', undefined, 20, 20, 300);

msgHeight.sl.preferredSize = [150, 20];

msgHeight.et = msgHeight.add('edittext');

msgHeight.et.preferredSize = [40, 20];

}

// Add a checkbox to control the presence of buttons to dismiss the alert box
dlg.hasBtnsCb = dlg.add('checkbox', undefined, 'Has alert buttons?');
// Add panel to determine alignment of buttons on the alert box
dlg.alertBtnsPnl = dlg.add('panel', undefined, 'Button alignment') ;
dlg.alertBtnsPnl.orientation = "row";
dlg.alertBtnsPnl.alignLeftRb =

dlg.alertBtnsPnl.add ('radiobutton', undefined, 'Left');
dlg.alertBtnsPnl.alignCenterRb =

dlg.alertBtnsPnl.add ('radiobutton', undefined, 'Center');
dlg.alertBtnsPnl.alignRightRb =

dlg.alertBtnsPnl.add ('radiobutton', undefined, 'Right');
// Add a panel with buttons to test parameters and
// create the alert box specification
dlg.btnPnl = dlg.add('panel', undefined, 'Build it');
dlg.btnPnl.orientation = "row";
dlg.btnPnl.testBtn = dlg.btnPnl.add('button', undefined, 'Test');
dlg.btnPnl.buildBtn = dlg.btnPnl.add('button', undefined, 'Build’',

{name:'ok'});
dlg.btnPnl.cancelBtn =

dlg.btnPnl.add ('button', undefined, 'Cancel', {name:'cancel'});

return dlg;
} // createBuilderDialog

/* This function initializes the values in the controls
*% of the builder dialog */

function initializeBuilder (builder) ({
// Set up initial control states
with (builder) {
hasBtnsCb.value = true;
alertBtnsPnl.alignCenterRb.value = true;
with (msgPnl) {
msgWidth.et.text = msgWidth.sl.value;
msgHeight.et.text = msgHeight.sl.value;
}
}
// Attach event callback functions to controls
/* The 'has buttons' checkbox enables or disables the panel that
determines the justification of the 'alert' button group */

Adobe Creative Suite 2
Bridge JavaScript Reference Using ScriptUl 88

builder.hasBtnsCb.onClick =

function () { this.parent.alertBtnsPnl.enabled = this.value; };
/* The edittext fields and scrollbars in msgPnl are connected */
with (builder.msgPnl) {

msgWidth.et.onChange =

function () { this.parent.parent.msgWidth.sl.value = this.text; };
msgWidth.sl.onChanging =

function () { this.parent.parent.msgWidth.et.text = this.value; };
msgHeight.et.onChange =

function () { this.parent.parent.msgHeight.sl.value = this.text; };
msgHeight.sl.onChanging =

function () { this.parent.parent.msgHeight.et.text = this.value; };

}

with (builder.btnPnl) {
// The Test button creates a trial Alert box from
// the current specifications
testBtn.onClick =
function () {
Window.alert ('Type Enter or Esc to dismiss the test Alert box');
createTestDialog (createResource (this.parent.parent)) ;
}i
// The Build and Cancel buttons close this dialog
buildBtn.onClick =

function () { this.parent.parent.close(1l); };
cancelBtn.onClick =
function () { this.parent.parent.close(2); };

}i

} // initializeBuilder

/* This function invokes the dialog an returns its result */
function runBuilder (builder) {

return builder.show() ;
}

/* This function creates and returns a string containing a dialog
** resource specification that will create an Alert dialog using
*% the parameters the user entered in the builder dialog. */
function createResource (builder) {
// Define the initial part of the resource spec with dialog parameters

var res = "dialog { " +
stringProperty ("text", builder.msgPnl.title.et.text) +
n\nn’.

// Define the alert message statictext element, sizing it as user specified
var textWidth = Number (builder.msgPnl.msgWidth.et.text) ;
var textHeight = Number (builder.msgPnl.msgHeight.et.text) ;

res += " msg: StaticText { " +
stringProperty ("text", builder.msgPnl.msg.et.text) +
" preferredSize: [" + textWidth + ", " + textHeight + "],\n" +

" justify:'center', properties:{multiline:true} }";
// Define buttons if desired
var hasButtons = builder.hasBtnsCb.value;
if (hasButtons) {

var groupAlign = "center";

// Align buttons as specified

if (builder.alertBtnsPnl.alignLeftRb.value)

groupAlign = "left";

Adobe Creative Suite 2
Bridge JavaScript Reference Using ScriptUl 89

else if (builder.alertBtnsPnl.alignRightRb.value)
groupAlign = "right";

res += ",\n" +
" btnGroup: Group {\n" +
stringProperty (" alignment", groupAlign) +
"\n" +
" okBtn: Button { " +
stringProperty ("text", "OK") +"},\n";

res += " cancelBtn: Button { " +
stringProperty ("text", "Cancel") +"}" +

noYw,
}

// done
res += Il\n} ",
return res;
function stringProperty (pname, pval) {
return pname + ":'" + pval + "', ";

function createTestDialog(resource) {
var target = new Window (resource) ;
target.center () ;
return target.show() ;

[/ - - Main script ------------- //
var builder = createBuilderDialog(); //for an alternative, see below
initializeBuilder (builder) ;
if (runBuilder (builder) == 1) {
// Create the Alert dialog resource specification string
var resSpec = createResource (builder) ;
// Write the resource spec string to a file w/platform file-open dialog
var fname = File.openDialog('Save resource specification');
var £ = File (fname) ;

if (f.open('w')) {
var ok = f.write(resSpec);
if (ok)
ok = f.close();
if (! ok)
Window.alert ("Exrror creating " + fname + ": " + f.error);

This example provides an alternative method of building the same initial Alert box builder dialog, using a
resource specification instead of explicit calls to the add method of a container element. To use this
alternate version, add this code to the beginning of the previous example in place of the
createBuilderDialog function. In the main script, replace the line:

var builder = createBuilderDialog() ;

with this line:

var builder = createBuilderDialogFromResource () ;

Adobe Creative Suite 2

Bridge JavaScript Reference Using ScriptUl 90

The new code follows:

var alertBuilderResource =
"dialog { \
text: 'Alert Box Builder', framelLocation:[100,100], \
msgPnl: Panel { orientation:'column', alignChildren:'right', \
text: 'Messages', \
title: Group { \
st: StaticText { text:'Alert box title:' }, \
et: EditText { text:'Sample Alert', \
preferredSize: [200, 20] } \
oA
msg: Group { \
st: StaticText { text:'Alert message:' }, \
et: EditText { text:'<your message here>', \
preferredSize: [200, 60], properties:{multiline:true} } \
b
msgWidth: Group { alignChildren:'center', \
st: StaticText { text:'Message width:' }, \
sl: Slider { minvalue:100, maxvalue:300, value:150, \
preferredSize: [150, 20] }, \
et: EditText { preferredSize: [40, 20] } \
b
msgHeight: Group { alignChildren:'center', \
st: StaticText { text:'Message height:' }, \
sl: Slider { minvalue:20, maxvalue:300, \
preferredSize: [150, 20] }, \
et: EditText { preferredSize: [40, 20] } \

P

} I \
hasBtnsCb: Checkbox { text:'Has alert buttons?', \

alignment:'center' }, \
alertBtnsPnl: Panel { orientation:'row', \
text: 'Button alignment', \
alignLeftRb: RadioButton { text:'Left' }, \
alignCenterRb: RadioButton { text:'Center' }
alignRightRb: RadioButton { text:'Right' } \
oA
btnPnl: Panel { orientation:'row', \
text: 'Build it', \
testBtn: Button { text:'Test' }, \
buildBtn: Button { text:'Build', properties:{name:'ok'} }, \
cancelBtn: Button { text:'Cancel',6 properties:{name:'cancel'} } \

P\
1

// This function creates the builder dialog from the resource string
function createBuilderDialogFromResource () {
var builder = new Window (alertBuilderResource) ;

return builder;
} // createBuilderDialogFromResource

’ \

Adobe Creative Suite 2
Bridge JavaScript Reference Using ScriptUl 91

For portions of your user interface that are displayed on the screen, you may want to localize the displayed
text. You can localize the display strings in any ScriptUl object (including MenuElement Objects) simply
and efficiently, using the Global localize function. This function takes as its argument a localization object
containing the localized versions of a string.

For complete details of this ExtendScript feature, see Localizing ExtendScript Strings.

A localization object is a JavaScript object literal whose property names are locale names, and whose
property values are the localized text strings. The locale name is an identifier as specified in the ISO 3166
standard. In this example, a btnText object contains localized text strings for several locales. This object
supplies the text for a But ton to be added to a window w:

btnText = { en: "Yes", de: "Ja", fr: "Oui" };
bl = w.add ("button", undefined, localize (btnText));

The 1ocalize function extracts the proper string for the current locale. It matches the current locale and
platform to one of the object's properties and returns the associated string. On a German system, for
example, the property de provides the string "Ja".

When your script uses localization to provide language-appropriate strings for Ul elements, it should also
take advantage of the Automatic Layout feature. The layout manager can determine the best size for each
Ul element based on its localized text value, automatically adjusting the layout of your script-defined
dialogs to allow for the varying widths of strings for different languages.

The localize function allows you to include variables in the string values. Each variable is replaced with
the result of evaluating an additional argument. For example:
today = {
en: "Today is %1/%2.",
de: "Heute ist der %2.%1."
Vi
d = new Date() ;
Window.alert (localize (today, d.getMonth()+1, d.getDate()));

If you do not need variable replacement, you can use automatic localization. To turn on automatic
localization, set the global value:

$.localization=true
When it is enabled, you can specify a localization object directly as the value of any property that takes a
localizable string, without using the 1ocalize function. For example:

btnText = { en: "Yes", de: "Ja", fr: "Oui" };

bl = w.add ("button", undefined, btnText) ;
The localize function always performs its translation, regardless of the setting of the $.1ocalize
variable. For example:

//0nly works if the $.localize=true
bl = w.add ("button", undefined, btnText) ;

Adobe Creative Suite 2
Bridge JavaScript Reference Using ScriptUl 92

//Always works, regardless of $.localize value
bl = w.add ("button", undefined, localize (btnText)) ;

If you need to include variables in the localized strings, use the 1ocalize function.

6 Bridge DOM Object Reference

This chapter provides a complete reference for the objects of the The Bridge Document Object Model
(DOM). The Bridge DOM objects are presented alphabetically. For each object, complete syntax details are
provided for the constructor, properties, and functions.

App Object The Bridge application.

Dialog Object A dialog that displays an HTML page.

Document Object A Bridge browser window.

Event Object A user-interaction event.

Favorites Object An array of the thumbnails shown in the Favorites pane.

Metadata Object Access to file metadata through a thumbnail.

NavBar Object A configurable navigation bar that can display user-interface controls.
Preferences Object Access to application preferences.

PreferencesDialog Object Access to the Preferences dialog.

Thumbnail Object A navigable node representing a file, folder, or web page.

Other available objects are discussed separately:

e Chapter 7, “File and Folder Object Reference,” describes the ExtendScript File and Folder objects
that provide portable access to the file system.

e Chapter 8, “ScriptUl Object Reference," describes the ExtendScript ScriptUl objects that provide
user-interface capability, including the MenuElement Object that allows you to extend Bridge menus.

e Chapter 9, “Interapplication Communication with Scripts," describes the BridgeTalk class and
message object that provides the ability to communicate among Adobe Creative Suite 2 applications
using JavaScript.

e Chapter 10, “ExtendScript Tools and Features," describes various ExtendScript utilities, including:

e For debugging, the Dollar ($) Object and ExtendScript Reflection Interface

e The Global localize function and the localization object that allow you to provide language versions
of displayed strings for different locales.

e The UnitValue Object for specifying and working with measurement values

93

Adobe Creative Suite 2

Bridge JavaScript Reference

Bridge DOM Object Reference 94

The App object represents the Bridge application. A single global instance is created on startup; access it

using the app global variable.

There is only one on App object. Multiple Bridge browser windows are represented by instances of
Document, and can be accessed with the app . document or app . documents properties.

displayDialogs String
document Document
documents Array of
Document
eventHandlers Array of
EventHandler
favorites Favorites
language String

The policy for the display of modal dialogs. Read/Write.
One of:

a1l (default): Modal dialogs should always be
displayed.

none: Modal dialog should never be displayed.

error: Only dialogs that report an error to the user
should be displayed.

The active (top-most) Document Object, representing the
active Bridge browser window. Read/Write.

A collection of Document Objects representing the set of
all open Bridge browser windows. Read/Write.

A collection of event handlers installed by scripts. Add an
event handler to this array to register it with Bridge.
Registered handler functions are called when any
user-interaction event is triggered. See Event Handling in
Bridge. Read/Write.

Each event handler is specified by a JavaScript object with
one property, the handler function name:

{ handler: fnName}

The handler function takes one argument, an Event
Object, and returns a result object {handled: boolean}.

e When true, the event has been completely handled
and Bridge does not look for more handlers or call the
default handler.

e When false (or when the handler returns undefined),
Bridge continues to call registered handlers, or if there
are no more, calls the default handler.

The top-level object for the navigation hierarchy displayed
in the Favorites pane. This Favorites Object is an array of
Thumbnail Objects. Read only.

The display name of the language for the current locale, as
configured by the operating system. This is the name as it
appears in the Preferences dialog. Read only.

Bridge JavaScript Reference

Adobe Creative Suite 2

Bridge DOM Object Reference 95

locale String The Adobe locale code for the current locale, as
configured by the operating system. Read only.
An Adobe locale code consists of a 2-letter ISO-639
language code and an optional 2-letter ISO 3166 country
code separated by an underscore. Case is significant. For
example, en_US, en_UK, ja_JB de_DE, fr_FR.

name String The CS2 application specifier for this application, "oridge".
Read only.

preferences Preferences The Preferences Object, which provides access to the user
preferences shown in the Preferences dialog (invoked
from the Edit > Preferences command). Read only.

version String The version number of the Bridge application. Read only.

beep Calls on the operating system to emit a short audio tone. Returns

app.beep () undefined.

browseTo Opens a new Bridge browser window and navigates to the specified

app .browseTo (path)

file or folder.

e For afolder, the Folders pane shows the hierarchy of containment
ending at this folder. The Content pane shows the contents of this
folder, and no file is selected.

e For afile, the Folders pane shows the hierarchy of containment for
the file. The Content pane shows the contents of the containing
folder, with this file scrolled into view and selected.

e |If path specifies a file or folder that does not exist on disk, the
browser navigates to a default path; Desktop in Windows, User
Home in Mac OS.

Creates the new Document Object for the window and makes it the
current app . document. Returns undefined.

path A File Object orFolder Object, or the path to a file or folder in platform-specific or
portable path format (URI notation). For example:

// using Windows platform-specific notation
app.browseTo ("C:\\MyFolder") ;

// using URI notation

app .browseTo (" /c/MyFolder/MyFile") ;

// the Folder object returns URI notation
app.browseTo (Folder.selectDialog ("Browse to?"));

For more information on path notations, see Specifying Paths.

Adobe Creative Suite 2
Bridge JavaScript Reference Bridge DOM Object Reference 96

Note: There are two ways to browse programmatically from a Bridge script:

e Callthe App Object’s browseTo function. This creates a new browser window and sets it to display
the location you specify.

e Setthe Document Object’s thumbnail property. This causes the current Folders pane to show and
select the specified node.

Starting the Bridge application from a script also opens a browser window. If you use an
interapplication message to call the browseTo function from a script that also starts the Bridge
application, you can inadvertently open two browser windows. To avoid this, use code such as the
following:

if (BridgeTalk.isRunning ('bridge'))
// create new browser window if needed
bt.body = "if (app.documents.length == 0)" +
" app.browseTo('" + target + "'); " +
"else" +
" app.document.thumbnail = new Thumbnail ('" + target + "');";
else //reuse window created by upcoming launch
bt.body = "app.document.thumbnail = new Thumbnail ('" + target + "');";

For details of how to send and receive interapplication messages, see Chapter 9, “Interapplication
Communication with Scripts.

buildFolderCache Forces Bridge to create thumbnail images for the specified folder, and
app .buildFolderCache optionally for all subfolders. These are stored in a cache file in the folder
(pathl, recursel) to which they apply. Returns undefined.
path The folder. A Folder Object, Thumbnail Object for a folder, or string of the form:

"browseProtocol: //pathSpecifier"
If this specifies a file, the cache is built for the containing folder.

recurse Optional. When true, builds the thumbnail cache recursively for all subfolders.
Default is false.

cancelTask Cancels a task that has been scheduled using scheduleTask. Returns
app .cancelTask undefined.

(taskId)

taskId The task ID number, as returned from app. scheduleTask.
hide In Mac OS, performs the platform-specific hide gesture. In Windows,
app.hide () does the equivalent of app.document .minimize (). Returns undefined.
preflightFiles For each specified file or folder, if it refers to a resource that does not

app.preflightFiles (files) | have alocal copy (such as the files referenced by VersionCue nodes),
downloads the specified resource. Returns true on success.

files An array of strings, each of which is a file or folder specification. See Specifying
Paths.
purgeAllCaches Purges the thumbnail caches for all folders. See also buildFolderCache
app.purgeAllCaches () and purgeFolderCache. Returns undefined.
purgeFolderCache Purges the thumbnail caches for the specified folder. See also
app .purgeFolderCache buildFolderCache and purgeAllCaches. Returns undefined.

([pathl)

Adobe Creative Suite 2
Bridge JavaScript Reference Bridge DOM Object Reference 97

path Optional. The folder to purge. A Folder Object, Thumbnail Object for a folder, or
string of the form:

"browseProtocol: //pathSpecifier"
If this specifies a file, the cache is purged for the containing folder. If not supplied,
purges all folder caches.

quit Shuts down the Bridge application. All Bridge browser windows are
app.quit () closed. Returns undefined.
registerBrowseScheme Registers a new script-defined browse scheme with Bridge. For
app . registerBrowseScheme additional information, see Script-Defined Browse Schemes. Returns
(name[, browseHandler]) true ON success, false if the scheme was previously registered.
name The name of the browse scheme protocol. Used in the protocol portion of the path

argument when creating a Thumbnail Object object that uses this browse scheme.
For example, if the browse scheme name is "myScheme" the path argument is
"myScheme: // filename',

browseHandler Optional. Used internally.

scheduleTask Executes a script after a specified delay. The script can be executed
app.scheduleTask (script, repeatedly, stopping when it returns undefined, or when you cancel
delayl, repeat]) the task using cancelTask.

Returns the task ID number, which can be used to cancel the scheduled
task.

For an example, see Scheduling tasks from callbacks.

script A string containing the script to be run.

delay A number of milliseconds to wait before executing the script. If 0, waits the default
number of milliseconds, which is 10.

repeat Optional. When true, execute the script repeatedly after each elapsed delay. Stop
when a script execution returns undefined, or when this task is cancelled by calling
app . cancelTask. Default is false, which means execute the script only once.

system Issues the argument to the operating system, as if it were entered on
app.system (commandLine) the command line in a shell. Control does not return to Bridge until this
function returns. Returns undefined.

commandLine The command to pass to the operating system.

Bridge JavaScript Reference

Adobe Creative Suite 2
Bridge DOM Object Reference 98

Represent’s a script-defined dialog that displays HTML user-interface controls. This allows some additional
flexibility, as an alternative to that available through the ScriptUl Window Object.

Note: The Bridge-DOM dialog object can contain only HTML controls; it cannot contain ScriptUI controls.
Similarly, the ScriptUl window object can contain only ScriptUl controls, not straight HTML.

To create a new Bridge dialog object, use the new constructor:

new Dialog (path) ;

path

A string containing the path and file name of the HTML page to display in the dialog.

active

closing

height

modal

title

width

Boolean

Boolean

Number

Boolean

String

Number

When true, the dialog is visible and frontmost on the screen, when falseitis
not. Set to true to make a dialog active. Read/write.

When set to true, the dialog closes, first invoking the willclose and doClose
callbacks, if supplied. Read/write.

The height of the dialog in pixels. Read/write.

When false (the default), the dialog is modeless, meaning that the
invocation function returns immediately, but the dialog stays up until
dismissed. A modeless dialog does not prevent input in other windows.
Read/write.

When true, the dialog is modal, meaning that it retains the keyboard focus
while it is up, and the user must dismiss it before taking any other action in
the application.

Note: Modal Bridge dialogs are not supported in this release.
The text displayed in the dialog’s title bar. Read/write.

The width of the dialog in pixels. Read/write.

center

dialogObj.center ()

close

dialogObj.close ()

Centers the dialog on the screen.

Forces the dialog to close, without invoking the willclose or
doClose callbacks. Returns undefined.

Use this to close a modeless dialog from elsewhere in the Bridge
script, in response to some external circumstance. From within
the dialog’s HTML page, set closing to trueinstead.

Adobe Creative Suite 2

Bridge JavaScript Reference Bridge DOM Object Reference 99
execdS Executes a JavaScript function that is defined within the HTML
dialogObj.execJS (script) page displayed in the dialog. If the page that defines the function

is not currently displayed, causes a run-time error.

Note: Do not call this method from a dialog callback function.
This attempts to re-enter the JavaScript engine, which is
not allowed, and causes Bridge to hang. A callback can,
instead, schedule a task using app.scheduleTask, and call
execJs from the function associated with the task. See
Scheduling tasks from callbacks.

Returns the result of the executed JavaScript function, which
must be a Boolean, Number, or String, or nul1.

script A string containing a script to execute. This typically contains the name and
arguments of the JavaScript function to execute, but can have multiple
statements, including variable declarations, assignments and so on.

open Opens a modeless dialog, which means that a user can take other
dialogObj.open (callbacks) actions in the Bridge user interface, as well as manipulating the
dialog. Returns undefined.

When you open a dialog box with the open method, you can
subsequently close it with the c1lose method, or by setting the
closing property to true.

callbacks A JavaScript object containing the function definitions for one or more callbacks,
in the form:
{ fnNamel: function([args]) { fnl definition },
fnName2: function([args]) { fn2 definition }

.
These functions are available to the code in the HTML page, which can invoke
them using the ca11 function. They run in Bridge's ExtendScript engine, and can
use Bridge DOM objects. See Communicating with Bridge from dialog JavaScript.

You can provide special callback functions named willclose and onClose., Which
are invoked when the user closes the dialog. See Displaying HTML in Bridge

Dialogs.

place Places the dialog on the screen at the specified position.
dialogObj.place (x, y)

X, y A position expressed as a percentage offset from the origin (left top) of the screen.
Real numbers between 0.0 and 1.0. Thus, (0.0, 0.0) specifies the left top, (1.0, 1.0)
the right bottom, and (0.5, 0.5) the center of the screen.

Negative values and values greater than 1 are allowed, but are normalized to
on-screen values. For example, (-0.5, 17.25) is the same as (0.5, 0.25).

print Invokes the platform-specific Print dialog box to print the HTML
dialogObj.print () page displayed in this dialog. Returns true on success.

Bridge JavaScript Reference

Adobe Creative Suite 2

Bridge DOM Object Reference 100

Represents a Bridge browser window.The user can create multiple browser windows by selecting the
File > New Window command. For each Bridge browser window, there is one Document instance.

e Access the object for the active Bridge browser window using app . document

e Access an array of objects for all open Bridge browser windows in app . documents

For a discussion of how the parts of the browser window map to JavaScript objects, see The Bridge DOM
and the Bridge Browser Window.

allowDrags

contentPaneMode

context

id

jsFuncs

maximized

minimized

Boolean

String

Thumbnail

Number

Object

Boolean

Boolean

When true (the default), drag-and-drop of thumbnails is
allowed in this browser window. When false, thumbnails
cannot be dragged within or from this browser window.

The type of content displayed in the Content pane. One of:

filesystem (default): The Content pane displays files and
folders.
web: The Content pane displays a web page.

The Thumbnail Object a user has right-clicked to invoke a
context menu. Otherwise undefined. Read only.

Read only. A unique identifier for the browser window, valid for
the life of the window. It is possible for more than one bocument
object to reference the same window.

A JavaScript object containing the function definitions for one
or more callbacks, in the form:

{ fnNamel: function([args]) { fnl definition },
fnName2: function([args]) { fn2 definition }

}
These functions are available to the code in an HTML page
displayed in the Content pane, which can invoke them using the
call function. They run in Bridge's ExtendScript engine, and can
use Bridge DOM objects. See Displaying HTML in Bridge.
Read/Write.

When true, this Bridge browser window is in the zoomed or
maximized state. Read only.

When true, this Bridge browser window is in the collapsed or
minimized state. Read only.

Note: In Mac OS, a window can be in the zoomed state, and still
be minimized. If both maximized and minimized are true,
call the document’s restore method to un-zoom the
window.

Adobe Creative Suite 2

Bridge JavaScript Reference Bridge DOM Object Reference 101
navbars NavBar Contains the predefined NavBar Objects for the configurable

navigation bars.

e To access the navigation bars that can be shown when the
Content pane displays a web page:

docObj .navbars.web. top
docObj .navbars.web.bottom

var myTopBar
var myBtmBar

e To access the navigation bars that can be shown when the
Content pane displays files and folders:

docObj.navbars.filesystem. top
docObj.filesystem. top

var myTopBar
var myBtmBar

Any of the four bars can be configured to display ScriptUl or
HTML Ul controls. All are hidden by default.

noItems String Text to be displayed in the Content pane when the selected
thumbnail is for an empty folder. The default is "No Items to
Display". Read/Write.

ovmer String The Adobe Creative Suite 2 application that created or first

activated this browser window, if it was not Bridge. A CS2
application specifier, such as:

golive

illustrator

indesign

photoshop
For details of application specifier format, see Application and
Namespace Specifiers.

previewLooping Boolean When true, thumbnails for video files are displayed in the
Preview pane with automatic looping. Read/Write.

selections Array of The Thumbnail Objects for the currently selected files in the
Thumbnail Content pane of this document. Read only. Change the
selections using the Document Object’s select, selectAll,
deselect and deselectAll methods. A script should wait until the
loaded event has occurred before making calls to document
selection methods.

showThumbnailName Boolean When true, thumbnail names are displayed in the Content pane.
This overrides the ShowName preference value. Read/Write.

Adobe Creative Suite 2
Bridge JavaScript Reference Bridge DOM Object Reference 102

sorts Array How the thumbnails in the content pane are sorted. An array
containing one JavaScript object:

{ type:category, reverse:boolean }

The type value is one of:

"user"
"name"
"date-created"
"date-modified"
"label"
"vc-status”
"rating"
"filesize"
"filetype"
"dimensions"
"resolution"
"colorprofile"
The reverse value is true if the thumbnails are sorted in reverse

order in the given category.
For example, to sort in reverse by creation date:

app.document.sorts[0] .type = "date-created"
app.document .sorts[0] .reverse = true;

status String The text displayed in the document's status line at the bottom of
the Content pane. Read/Write.

thumbnail Thumbnail | The Thumbnail Object for the node currently selected in the
Folders pane. Read/Write. Setting this value navigates to and
selects the corresponding node in the Folders pane. The
selected node is displayed in the Content pane according to its

displayMode.

Note: The document . thumbnail.children array is not populated
until the loaded event has occurred for the document.

thumbnailViewMode | String The view mode of the Content pane, as selected by the View
menu. Read/Write. One of:

thumbnails
details
alternates
versions
filmstrip

visible Boolean When true, the Browser window is expanded, as opposed to
being minimized or collapsed. Setting visible to false collapses
the window. Read/Write.

Adobe Creative Suite 2

Bridge JavaScript Reference Bridge DOM Object Reference 103
visibleThumbnails Array of Read only. An array of Thumbnail Objects that are currently
Thumbnail shown in the Content pane. The array is ordered according to

the current sort order, and contains only thumbnails whose
visible property is true.

visitUrl function A callback function that is called when the Content pane is
about to open a URL. Allows the script to approve or redirect the
browser. The function takes the URL as an argument, and should
return an object with these properties:

result: When false, Bridge does not open the new URL.
When true, it opens the passed URL or a different URL as
provided in this object.

url: When present, a URL string that replaces the passed
URL.

toHistory: When false, the passed or provided URL is not
added to the browser’s history list. Default is true.

For example, this confirms a link with the user:

var myFn = function(url) {
if (Window.confirm("Proceed to " +url+ " 2"))
return {result:true};
else
return {result:false};
}

app.document .visitUrl = myFn;

This example replaces a link to an unwanted page with an
application-specific help page:

var helpPageFn= function (url) {
if(url == "unwanted page"))
return {result:true, url:"my help page",
toHistory:false};
else
return {result:true};
}
app .document .visitUrl = helpPageFn;

Within the context of this function, the implicit this variable
references this Document Object. For example:

var myFilter = function(url) {
Window.alert (this.thumbnail.displayPath) ;
return {result:true, url:url};

}

Note: This function is also called when the Content pane
switches from a web page view to a filesystem view. In
this case, the URL passed to the function is "about : blank".

bringToFront Makes this browser window the topmost active window in the
docObj .bringToFront () windowing system. Returns undefined.
close Closes this browser window. Returns undefined.

docObj.close ()

Adobe Creative Suite 2

Bridge JavaScript Reference Bridge DOM Object Reference 104
deselect If the specified thumbnail is a child of this document and is
docObj .deselect (thumbnail) selected, removed it from the selections array and deselects it

in the browser window. Returns true if the thumbnail was
deselected.

A script should wait until the loaded event has occurred before
making calls to document selection methods.

thumbnail The Thumbnail Object for the node to deselect.
deselectall Removes all members from the selections array and deselects
docObj.deselectall () all thumbnails in the browser window. Returns undefined.

A script should wait until the loaded event has occurred before
making calls to document selection methods.

execdS Executes a JavaScript function that is defined within the HTML

docObj .execdS (script) page displayed in the Content pane when a thumbnail with
displayMode=web is selected. If the page that defines the
function is not currently displayed, causes a run-time error.

Note: Do not call this method from a jsFuncs callback function.
This attempts to re-enter the JavaScript engine, which is
not allowed, and causes Bridge to hang. A callback can,
instead, schedule a task using app . scheduleTask, and
call execJs from the function associated with the task.
See Scheduling tasks from callbacks.

Returns the result of the executed JavaScript function, which
must be a Boolean, Number, or String, or nul1.

For an example, see Executing script functions defined on
HTML Ul pages.

script A string containing a script to execute. This typically contains the name and
arguments of the JavaScript function to execute, but can have multiple
statements, including variable declarations, assignments and so on.

maximize Maximizes or zooms this browser window. Returns undefined.

docObj.maximize ()

minimize Minimizes or docs this browser window. Returns undefined.

docObj.minimize ()

refresh Refreshes the display of this browser window. Returns
docObj.refresh () undefined.

resetToDefaultWorkspace Restores the default configuration of the tabbed panes in this
docObj . resetToDefaultiiorkspace () browser window. The equivalent of choosing Window >

Workspace > Reset. Returns undefined.

restore Restores this browser window after it has been minimized. In
docObj.restore () Windows, makes it user-sizeable. In Mac OS, returns it to the
user-configured size. Returns undefined.

Adobe Creative Suite 2

Bridge JavaScript Reference Bridge DOM Object Reference 105
reveal Causes the Content pane (not the Folders or Favorites pane) to
docObj.reveal (thumbnail) show the specified thumbnail, scrolling the display if necessary

to make it visible. Does not select the Thumbnail. Returns
undefined.
thumbnail The Thumbnail Object for the node to scroll to.
select If the specified thumbnail is a child of this document and is not
docObj .select (thumbnail) selected, adds it to the selections array and selects it in the

Content pane. This is the same as selecting the icon in the
Content pane with CONTROL-click. Returns true if the thumbnail
was selected.

A script should wait until the loaded event has occurred before
making calls to document selection methods.

thumbnail The Thumbnail Object for the node to select.
selectAll Adds all child Thumbnail Objects of the current thumbnail
docObj.selectall () (document . thumbnail) to the selections array, and selects them

in the Content pane. This is the same as typing CONTROL-a in the
Content pane. Returns undefined.

A script should wait until the loaded event has occurred before
making calls to document selection methods.

Adobe Creative Suite 2
Bridge JavaScript Reference Bridge DOM Object Reference 106

Represents a user-interaction event, such as clicking a thumbnail. Bridge creates an event object
whenever one of the triggering events occurs, and passes it to any event handlers that you have
registered with the App Object’s eventHandlers property. The only way to access an event object is as the
argument to such an event-handling function. See Event Handling in Bridge for details of how to define
and register these functions.

The object with which the user interacted to generate the event is called the target object of that event.
Different target object types are associated with different types of events, as listed in Event Object Types.

The event object defines no functions.

appPath String When the type is openWith, the platform-specific path to the
selected opening application. Otherwise undefined. Read only.

document Document When the target object is a Thumbnail Object, the Document
Object for the browser window in which the event occurred.
Otherwise undefined. Read only.

favorites Favorites When 1locationis favorites, the Favorites Object for the panein
which the event occurred. Otherwise undefined. Read only.

isContext Boolean When the target object is a Thumbnail Object, and the type is
select, this value is true if the event was generated by a right-click
(the gesture that normally brings up a context menu). Otherwise
false.

location String The location at which the event occurred. This value helps to
distinguish events of the same type than can be triggered in
different ways. One of:

app: The target object is the App Object and the event was
generated for an interaction with the operating system.

document: The target object is a Thumbnail Object and the
event was generated for an interaction in the Folders pane,
or the target object is a Document Object and the event
was generated for an interaction with the windowing
environment.

favorites: The target object is a Thumbnail Object and the
event was generated for an interaction in the Favorites
pane.

filesystem: The target object is a Document Object and the
event was generated for an interaction with the file
system.

prefs: The target object is the PreferencesDialog Object and
the event was generated in the Preferences dialog.

web: The target object is a Document Object and the event
was generated for an interaction with the Internet. In this
case, event .url contains the URL of the page.

Read only.

Bridge JavaScript Reference

Adobe Creative Suite 2
Bridge DOM Object Reference 107

object

type

url

where

Thumbnail, The target object of the event; that is, the object that generated
Document, App, the event. Read/Write.
PreferencesDialog

String The type of action that triggered the event. Different types of
events that are supported for each type of target object; see
Event Object Types. Read only.

String When 1ocationis web, the URL of the web page. Read only.

String When 1ocationis favorites, one of:

standard: The target object is a predefined member of the
Favorites array.

user: The target object is a user-added member of the
Favorites array.

Otherwise undefined. Read only.

Events of different types are triggered for different target objects. All types are described here according
to the target object.

When an application event occurs, the event object has the following property values:

e Thetarget, eventObj.object, is the App Object

e Thelocation, eventObj.location, is the string app.

e Thetype, eventObj . type, is one of these event types:

close

destroy

Generated when the Bridge application has received a request to terminate, but has not yet
started the process. If the handler returns a handled value of true in the result object, the
termination is cancelled. To query the user, you can set this with the return value of
Window.confirm. For example:

return { handled: Window.confirm("Really quit?") };

Generated when the Bridge application terminates. Occurs when the user exits from Bridge
by selecting the File > Exit command, when the user closes the final open document, or
when a script calls the App Object’s quit function.

The handler cannot override the default shutdown behavior, but it can take additional
actions before the shutdown completes.

Bridge JavaScript Reference

Adobe Creative Suite 2
Bridge DOM Object Reference 108

You cannot define event handlers that override the default behavior of Document events. You can,
however, write an event handler to take additional actions prior to the event.

When a document event occurs, the event object has the following property values:

e Thetarget, eventObj.object,is a Document Object

e Thelocation, eventObj.location, can be app, web, or document, depending on the type.

e Thetype, eventObj . type, is one of these event types:

complete

create

deselect

destroy

empty

failed

loaded

loading

select

stopped

uploading

Location is web. Generated when the Content pane successfully displays a web page.
The event object's url property contains the URL of the page.

Location is app. Generated when a new document is created. Occurs when the user
selects the File > New Window command, or when a script creates a new document
with a constructor call.

Location is document. Generated when the OS window focus is removed from the
browser window.

Location is app. Generated when a document is destroyed. Occurs when the user
selects the File > Close Window command in the Ul, when a script closes a document
using the Document Object’s close method, or when Bridge closes a document if the
application is terminated.

Location is web. Generated when the Content pane tries to display a web page with no
content. The event object's url property contains the URL of the page.

Location is web. Generated when the Content pane tries to display a web page and
fails. The event object's url property contains the URL of the page.

Location is filesystem Generated when the Content pane has finished displaying
thumbnail icons for all files. The Document . thumbnail.children array is not populated
until this event has occurred for the document.

A script should wait until this event has occurred before making calls to document
selection methods such as select and deselect.

Location is web. Generated when the Content pane begins trying to display a web
page. The event object's url property contains the URL of the page.

Location is document. Generated when the user double-clicks a thumbnail or group of
thumbnails in the Content pane, after the thumbnail select event. The Document
Object’s selections property contains the Thumbnail Object or objects. The default
action is for the selected item or items to be opened in the Content pane.

Location is document. Generated when the Document window gains the OS window
focus.

Location is web. Generated when the Content pane is trying to display a web page,
and stops before the page is fully loaded. The event object's url property contains the
URL of the page.

Location is web. Generated when the Content pane begins uploading content to a
web page via a POST request. The event object's url property contains the URL of the
target page.

Bridge JavaScript Reference

Adobe Creative Suite 2
Bridge DOM Object Reference 109

When a thumbnail event occurs, the event object has the following property values:

e Thetarget, eventObj.object,isa Thumbnail Object.

e Thelocation, eventObj.location, is document for an interaction with the Folders or Content pane,
or favorites for an interaction with the Favorites pane.

e Iflocationisfavorites,the favorites property contains the Favorites Object and the which
property reflects whether the target thumbnail is a predefined or user-defined member of the
favorites array.

e The eventObj.document property contains the Document Object for the browser window in which
the event occurred.

e Thetype, eventObj . type, is one of these event types:

add

deselect

hover

modify

move

openWith

preview

Location is favorites. Generated when the user adds a new node to the Favorites pane.

Location is document. Generated when focus is removed from a thumbnail. After a user has
clicked a thumbnail 2, this event occurs with thumbnail 2 as the target when the user clicks
on another object, either another thumbnail in the Content pane, or a different folder in
the Folders pane. It also occurs when the user chooses the Edit > Deselect All, and when a
script calls the Document Object’s deselect or deselectAll method.

Location is document. Generated when the cursor hovers over a thumbnail. Your handler
can override the text displayed in the tooltip box. Return the text to be displayed in the
result object property tipText.

Location is favorites. Generated when the user modifies new node to the Favorites pane
by adding a subnode to it.

Location is favorites. Generated when the user changes the position of a node in the
Favorites pane.

Location is document. Generated when a thumbnail in the Content pane is opened with an
application other than Bridge. Occurs when the user successfully opens a thumbnail with
the File > Open command, or by double-clicking, or when a script calls the Thumbnail
Object’s open method.

Note: Opening a folder does not generate this event, because Bridge is the application
opening the folder.

Location is document. Generated when a user makes a selection of thumbnails in the
Content pane, then selects an application from the Open With submenu of the File or
context menu. The object provides a platform-specific path string to the selected
application.

Location is document. Generated when an image thumbnail in the Content pane is
selected. The handler can return an object in which the result value is an array containing
text captions to display under the image in the Preview pane. For example:

{ handled: true, result: ["my image", "new preview caption"] }
The preview caption can be modified this way for images displayed in filmstrip view as
well.

Adobe Creative Suite 2

Bridge JavaScript Reference Bridge DOM Object Reference 110
remove Location is favorites. Generated when the user removes a node from the Favorites pane.
select Location is document. Generated when a thumbnail in the Content pane is selected. Occurs

when a user clicks a specific thumbnail in the Content pane, or chooses the Edit > Select
All or Edit > Select Labeled commands, and when a script calls the Document Object’s
select or selectAll method. If the selection occurs through a right-button click, the event
object's isContext value is true.

If the user double-clicks the thumbnail, this event is followed by a document open event.

You cannot override the default behavior of a Preferences dialog event. You can, however, write an event
handler to take additional actions prior to the default action, such as adding a panel that reflects your own
preferences, and interpreting the results from that panel.

When an Preferences dialog event occurs, the event object has the following property values:

e Thetarget, eventObj.object, is the PreferencesDialog Object

e Thelocation, eventObj.location,is the string prefs.

e Thetype, eventObj . type, is one of these event types:

cancel | Generated when the user clicks Cancel in the Preferences dialog.
create | Generated when the user invokes the Preferences dialog.

destroy Generated when the user closes the Preferences dialog using the window frame's close
button.

ok Generated when the user clicks OK in the Preferences dialog.

Bridge JavaScript Reference

Adobe Creative Suite 2

Bridge DOM Object Reference 111

Represents the navigation nodes that appear in the Favorites pane in the Bridge browser. The Favorites
object is itself an array of Thumbnail Objects.

While the Folders pane shows the full navigation hierarchy, with all folders and subfolders that Bridge can
access, the Favorites pane shows only certain top-level folders and one level of subfolders. Subfolders in
the Favorites pane can be, but are not necessarily, children of the Thumbnail for the parent node.

Access the Favorites object through the App Object’s favorites property:

currentFavorites = app.favorites

length Number

section String

The number of Thumbnail Objects in the Favorites pane.

Sets the section of the Favorites pane for the next node operations in the
immediate scope. The value does not persist. One of:

standard (default): The top section of the Favorites pane containing
predefined nodes.

user: The bottom section of the Favorites pane containing user-selected
nodes.

addchild

favoritesObj.addChild

(parentNode,

parentNode

subNode

clearAll

subNode)

Inserts a new subnode into the current section of the favorites
array, and updates the Favorites pane to show the new node
below its parent when the parent is selected. Returns true on
success. If the specified parent node is not in favorites array,
returns false and does not add the subnode.

The Thumbnail Object for the parent node. Must be a root node in the favorites
array.

The Thumbnail Object for the subnode. This node can be, but does not need not
to be a child of the parent Thumbnail. It is not added to the parent’s children array.

favoritesObj.clearAll

insert

favoritesObj.insert

(thumbnail [,

thumbnail

index

index])

O

Deletes all the nodes from the current section of the favorites
array and updates the Favorites pane. Returns undefined.

Inserts a new node into the current sections of the favorites array,
and updates the Favorites pane to show the new node at the root
level. Returns true on success. If the referenced node is already in
the array, returns false and does not change the array.

The Thumbnail Object for the node to insert.

Optional. A 0-based index into the existing node array at which to insert the new
node, or an object reference for a node in the existing node array. The node is
inserted before this existing node. If the value is beyond the end, is not in the
existing node array, or is not supplied, the new node is appended to the end of the
array.

Adobe Creative Suite 2
Bridge JavaScript Reference Bridge DOM Object Reference 112

» Example

This example creates four new thumbnails that use a script-defined browse scheme. It inserts two
into the favorites array, one at the second position (app. favorites[1]), and the other at the end.
These appear in the Favorites pane. The remaining thumbnails become children of one of the root
nodes. The Favorites array length increases by two, since the children are not included in it.

app.registerBrowseScheme ("myBrowseScheme") ;

var top = new Thumbnail ("myBrowseScheme://root", "My Home");

var myFiles = new Thumbnail ("myBrowseScheme://myFiles", "My Files");

var underTopl = new Thumbnail ("myBrowseScheme://root/utl", "UT1");

var underTop2 = new Thumbnail ("myBrowseScheme://root/ut2", "UT2");
top.displayPath = "http://www.adobe.com"; //when clicked, show this page
top.displayMode = "web";

myFiles.displayPath = "/C/PersonalFiles"; //when clicked, go to this folder
underTopl .displayPath = "/C/Templ";

underTop2 .displayPath = "/C/Temp2";

favRoot = app.favorites; //the initial array reflects content of Favorites pane
favRoot.section="user"; // modify the user section

favRoot.insert(top, 1); // add new thumbnails to Favorites

favRoot.insert(myFiles, top);

top.insert(underTopl); // use Thumbnail.insert to add folder children
top.insert (underTop2);

// add one of the folder children as a subnode in Favorites

favRoot .addChild(favRoot[1l], underTopl);

remove Removes the specified script-defined node from the favorites
favoritesObj.remove (thumbnail) | array and updates the Favorites pane. Returns true on success.
Scripts cannot access predefined nodes.

thumbnail The Thumbnail Object for the node to remove.

Adobe Creative Suite 2
Bridge JavaScript Reference Bridge DOM Object Reference 113

Allows you to access the Extensible Metadata Platform (XMP) metadata associated with the file node of a
Thumbnail Object. This is external data associated with the file, such a copyright owner, author, or camera
settings.

Metadata is organized into schemas that group related types of metadata; for example the XMP Rights
Management Schema groups metadata associated with ownership and rights, such as copyright and
owner. The metadata properties found in a specific schema are accessed via the namespace of the schema
and the property name of the metadata item. For example, the namespace of the XMP Rights Management
Schemais http://www.adobe.com/xap/1.0/rights, and the copyright property name is
Copyright.

For more information about XMP metadata, see the XMP specification:

http://partners.adobe.com/asn/tech/xmp/pdf /xmpspecification.pdf

Access the Metadata object for a file-type thumbnail through the Thumbnail Object’s metadata property:

var t = new Thumbnail (File ("/C/mydir/myfile"));
var mdata = t.metadata

Label String Provides programmatic access to an image thumbnail label value.
Thumbnail labels are set interactively through the Label menu in
the menu bar and in the right-click context menu of a thumbnail.
The choices that appear in the menu are controlled by a
preference, which is in turn accessible through the Preferences
Object’s Label1 property.

For example, if your preferences associate the red flag with the
string Urgent, the string Urgent appears in the Label menu (in
place of the default string rRed). When you choose that label for a
thumbnail, the string urgent appears in this property and the
thumbnail is displayed with a red highlight frame. The string is
only displayed with the thumbnail if you choose to display the
Label metadata value as one of the metadata display lines.

You can set a label programmatically by setting this property to
any string. Setting a thumbnail .metadata.Label value directly
allows you to use a label other than the ones defined in the
preferences. If the string is not one of the label preferences, it is
associated with a white highlight frame.

An empty string value means the thumbnail is not labeled.

http://partners.adobe.com/asn/tech/xmp/pdf/xmpspecification.pdf

Adobe Creative Suite 2
Bridge JavaScript Reference Bridge DOM Object Reference 114

namespace String The current XMP namespace, used to search for XMP properties.
Default is the root namespace. Read/Write.

To access values in a specific schema, the namespace for that
schema must be set before referencing the properties in the
schema.

xmpPropertyName | String Get or set a simple XMP property value for a thumbnail by
specifying it as a property of that thumbnail’s metadata object.
Properties are accessed in the current namespace. Read/Write.

New simple metadata properties are created and added to the
current namespace when a script references a new property
name. You can add properties only to currently defined
namespaces, not to the root namespace. Property names are case
sensitive.

This script gets the metadata associated with the first thumbnail in the content pane. Once the proper
namespace is set, it reads the "Exposure" metadata property associated with that thumbnail.

var m = app.document.thumbnail .metadata;
m.namespace = "http://ns.adobe.com/camera-raw-settings/1.0/";
Window.alert ("Metadata.Exposure: " + m.Exposure) ;

This script gets the metadata associated with a specific file. It make the photoshop (IPTC) namespace
current, and sets the value for the "Author" property in that namespace. It then creates a new metadata
property, "SpecialNotes", which is added to the namespace.

tn = new Thumbnail (File("/C/MyFiles/txtFile.txt"));
md = tn.metadata;

md.namespace = "http://ns.adobe.com/photoshop/1.0/";
md.Author = "Jane Smith";

Window.alert ("file author: ", md.Author) ;
md.SpecialNotes = "Special notes for this file.";
Window.alert ("Special Notes: ", md.SpecialNotes) ;

This script sets a user-supplied label flag for all currently selected thumbnails.

var sels = app.document.selections;
var label = Window.prompt ("Label:");
for (i = 0; i < sels.length; i++) {
var t = sels[i];
var m = t.metadata;
m.namespace = "http://ns.adobe.com/xap/1.0/";
m.Label = label;

}

This script gets one of the values of a multivalued property. In this case, the Media property’s value is a
JavaScript object with a property bmsp:

var t = app.document.selections[0];

var m = t.metadata;

m.namespace = "http://ns.adobe.com/StockPhoto/1.0/";
var media = m.Media

var langID = media["Media/bmsp:LanguageID"];

Adobe Creative Suite 2
Bridge JavaScript Reference Bridge DOM Object Reference 115

applyMetadataTemplate Adds metadata properties to this object that were saved to an

metadataObj .applyMetadataTemplate = XMP template from the FileInfo dialog. Returns undefined.
(templateName, modType)

templateName String, The name of the XMP template. Templates are stored for each user in:
o (Windows) $APPDATA% /Adobe/XMP/Metadata Templates/

e (Mac OS) /Users/username/Library/Application Support/Adobe/XMP/
Metadata Templates/

modType The modification type, one of:

append: Adds to the metadata any property that is in the template but not in
the source. If a property in the template already exists in the source, its
value is not changed, unless it is an array. For an array, adds members that
are in the template but not in the source. If an array member already
exists in the source, the value is not changed.

replace: Adds to the metadata all properties and values that are in the
template. If a property in the template already exists in the source, its
value is changed to the template value.

Adobe Creative Suite 2
Bridge JavaScript Reference Bridge DOM Object Reference 116

Represents a configurable navigation bar, one of which can be displayed at the top of the Bridge browser
window (below the application navigation bar), and one at the bottom (above the status bar). You do not
create new NavBar objects. Instead, you access the existing objects through the Document Object’ s
properties:

topbarW = app.document.navbars.web.top

btmbarw app.document .navbars.web.bottom
topbarF app.document .navbars.filesystem. top
btmbarF = app.document.navbars.filesystem.bottom

The bars in navbars . web can be shown when the Content pane displays a web page. The bars in
navbars.filesystemcan be shown when the Content pane displays files and folders.

The navigation bars are hidden by default. You can show and hide them by setting the NavBar object’s
visible property.

Your script can configure a navigation bar to contain user-interface controls such as push buttons, radio
buttons, edit fields, list boxes, and so on. The NavBar objects are initially empty. You can either add
ScriptUI controls, or reference HTML code that provides the interface controls. You cannot mix the two
types of controls; the bar displays either ScriptUl or HTML. For further discussion, see Navigation Bars.

file String When type=html, the URL for the HTML page to display. Read/Write.
height Number The height of the navigation bar. (default is 40 pixels). Read/Write.
jsFuncs Object A JavaScript object that defines a set of callback functions that access the

Bridge DOM, but can be called from within an HTML page displayed in this
navigation bar. Used only when type=html. Read/Write.

Each property in the object is a callback function name, and the value is the
function declaration:

{

fnNamel: function([args]) { fnl_definition },

fnName2: function([args]) { fn2 _definition }
}

The HTML page displayed by this bar can access the Bridge DOM by invoking
one of these callbacks, using the JavaScript function ca11. For example,
suppose jsFuncs has the value:

{ myFn: function(x) { return x > app.document.topNavBar.height } },
A script on the displayed HTML page can invoke this function as follows:

var toobig = call ("myFn", 55);
See Displaying HTML in a Navigation Bar.

Adobe Creative Suite 2
Bridge JavaScript Reference Bridge DOM Object Reference 117

type String The type of user-interface controls displayed in the navigation bar.
Read/Write. One of:

scriptui: Display the ScriptUl controls added with this object’s add
method.
html: Display the HTML page specified by file.

visible Boolean Controls whether the NavBar is visible or not. If true, the navigation bar is
visible. Default is false. Read/Write.

add Creates and returns a new ScriptUl control or container object and
navBarObj.add (type adds it to the children of this navigation bar. Returns nu11 if unable
[, bounds, text, to create the object.

{ creation props> } 1);
For an example, see Displaying ScriptUl elements in a navigation

bar.
type The control type. See Control types and creation parameters.
bounds Optional. A bounds specification that describes the size and position of the new
control or container, relative to its parent. See Bounds object for specification

formats.

If supplied, this value creates a new Bounds object which is assigned to the new
object’s bounds property.

text Optional. A string containing the initial text to be displayed in the control as the
title, label, or contents, depending on the control type. If supplied, this value is
assigned to the new object’s text property.

creation_props Optional. The properties of this JavaScript object specify creation parameters,
which are specific to each object type. See Control types and creation

parameters.

Adobe Creative Suite 2

Bridge JavaScript Reference Bridge DOM Object Reference 118
execdS Executes a JavaScript function that is defined within the HTML page
navBarObj.execJS (script) displayed in the navigation bar when type=html. If the page that

defines the function is not currently displayed, causes a run-time
error.

Note: Do not call this method from a NavBar callback function
defined in jsFuncs. This attempts to re-enter the JavaScript
engine, which is not allowed, and causes Bridge to hang. A
callback can, instead, schedule a task using
app.scheduleTask (), and call execJs from the function
associated with the task. See Scheduling tasks from
callbacks.

Returns the result of the executed JavaScript function, which must
be a Boolean, Number, or String, or nu11.

For an example, see Displaying HTML in a Navigation Bar.

script A string containing a script to execute. This typically contains the name and
arguments of the JavaScript function to execute, but can have multiple
statements, including variable declarations, assignments and so on.

print Prints the HTML page displayed in the navigation bar when
navBarObj.print () type=html. Does nothing if the HTML is not yet loaded when the call
is made, or if type=scriptui. Returns true on success.

Bridge JavaScript Reference

Adobe Creative Suite 2
Bridge DOM Object Reference 119

Allows access to the Bridge application preferences, as viewed in and controlled by Preferences dialog
(invoked by the Edit > Preferences command).

e Some existing preferences can be set or read by setting or retrieving the associated property value. Not
all existing preferences are available in the scripting environment. Those that are available are listed
below. Preference values do not take effect until the Bridge application is restarted.

e You can set certain preference values for the current session only. That is, the changes take effect
immediately, but do not persist across sessions. The next time the Bridge application is restarted, the
global preference value is used.

e A script can create a new preference by simply referencing a new property name in this object. New
preferences must be of the type String, Number, or Boolean. Composite types (such as Rect and Point)
are retrieved as String objects.

Access the Preference object i through the App Object’s preferences property:

var prefs

app.preferences;

The following current-view properties allow you to set these styles for a specific Content pane view. They
do not change the related global preference, and the changes do not persist beyond the current view:

extraMetadata Array of

showName

Number

Boolean

An array of three values, where each value identifies a metadata property
to be displayed beneath a thumbnail icon. Read/Write.

Setting this property is the same as setting the preferences associated
with the Additional Thumbnail Metatdata drop-down lists and
checkboxes in the Preferences/General pane, except that the setting
does not persist beyond the current view.

The first value in the array sets the first line of additional metadata, the
second value sets the second line, and the third value sets the third line.
A number in the corresponding array location identifies the metadata
property to be displayed in that line. The numeric values map to
metadata properties as follows:

1: DateCreated
DateModified
Dimensions

Label

Author

Keywords
Copyright
ColorMode

9: BitDepth

10: DocumentCreator
11: OpeningApplication
12: Exposure

An array value of undefined turns off the display of metadata for that
line.

O Joulkx W

When true, the names of thumbnails are displayed beneath the icon in
this view. When false, they are not. Read/Write. (This is overridden by
the document’s showThumbnailName value.)

Adobe Creative Suite 2
Bridge JavaScript Reference Bridge DOM Object Reference 120

The following properties allow access to existing application preferences. Preference values do not take
effect until the Bridge application is restarted:

BackgroundColor Number In the Preferences/General pane, the preference
associated with the Background slide bar. Read/Write.
The background color is set in the range of 0 - 255,
where 0 is black, and 255 is white. Default 186.

FileSize Number In the Preferences/Advanced pane, the preference
associated with Do not process files larger than: nnn
MB. Default 200. Read/Write.

HideEmptyFields Boolean In the Preferences/Metadata pane, the preference
associated with the Hide Empty Fields checkbox, true
when checked. Default true. Read/Write.

Labell String In the Preferences/Labels pane, the preferences

Label2 associated with the label colors and their keyboard

Label3 shortcuts. These preferences control the choices that

Label4 appear in the Label menu in the menu bar and in the

Label5 right-click context menu for image thumbnails.
Read/Write.

The preference value is any string. For example, if you
associate the red flag with the string Urgent, the string
Urgent appears in Label menu (in place of the default
string Red), in the tooltip for the labeled thumbnail, and
in a labeled thumbnail’s metadata Label value. The
thumbnail is displayed with a red highlight frame.

The labeling feature is only available for those
thumbnails associated with image files.

By default, no labels are set. Labels can be set
interactively by choosing from the Label menu or
programmatically by setting the

Thumbnail .metadata.Label value to any string. If that
string is not one of the preferences, it is associated with
a white highlight frame.

Language String In the Preferences/Advanced pane, the preference
associated with Language. Read/Write.

MRUCount Number In the Preferences/Advanced pane, the preference
associated with Number of Recently Visited Folders
to Display in the LookIn Popup. Read/Write.

ShowLabels Boolean In the Preferences/General pane, the preference
associated with Show Labels, true when checked.
Default true. Read/Write.

ShowName Boolean When true, the names of thumbnails are displayed
beneath the icon. When false, they are not. Read/Write.

Adobe Creative Suite 2
Bridge JavaScript Reference Bridge DOM Object Reference 121

UseLocalCaches Boolean In the Preferences/General pane, the preference
associated with Cache choices, true when Use a
Centralized Cache File is selected. Default true.
Read/Write.

anyPropertyName Number, A script-defined preference. Read/Write.
String, or

This example creates a new preference named mypref
Boolean

by assigning a value to the property sample, then
accesses the value by reading the property.
app.preferences.mypref = "sample value";
Window.alert ("New preference mypref = " +
app.preferences.mypref) ;
To add your script-defined preference to the
Preferences dialog, use the PreferencesDialog Object’s
addPanel function.

Note: The script must implement default values and
initialization of any private setting stored in the
Bridge preferences.

clear Removes script-created keys and values from the Bridge
prefObj.clear ([name[, name2...]]) preferences, or resets preferences. Returns undefined.

e If one or more preference names is passed, each is
removed. If you try to access the property for a preference
that has been removed, the property returns undefined.

e If no preference names are passed, removes all
script-defined preferences, and resets all Bridge application
preferences to their default values.

name Optional. One or more names of preferences to remove.

Adobe Creative Suite 2
Bridge JavaScript Reference Bridge DOM Object Reference 122

Provides access to the Bridge Preferences dialog, allowing you to add a panel to the dialog with your own
ScriptUl controls that access and set any application preferences that you have defined by adding
properties to the Preferences Object.

You can only access this object as the target of an event. The object is returned in the object property of an
Event Object that results from an event in a Preferences dialog. See PreferencesDialog events.

The Preferences dialog is modal, which means that no other Bridge events can occur until the user
dismisses it with the OK or Cancel button, or closes it with the window-frame icon.

e For the OK button, the dialog generates an ok event. Your handler can collect the values from the
controls in your panel, and modify the property values in the Preferences object accordingly.

e For the Cancel button, the dialog generates a cancel event, and for the window-close gesture, it
generates a destroy event. Your handler can, for example, clean up structures you created for the
window.

The object has no properties.

addPanel Creates and returns a ScriptUl Window Object to be used as a
prefObj.add (name) new pane in the Preferences dialog. You can add ScriptUI

controls to the window to allow users to access and set
preferences that you provide.

name The name of the new panel, used as the title of the new window object.

» Example

This example adds a pane to the Preferences dialog that contains a single checkbox, which controls the
boolean preference named myPpref.

function doPrefs(dialog) {
var panel = dialog.addPanel ("My Preferences") ;
var aBox = panel.add('checkbox', [50, 50, 200, 100], "My Pref",
{ alignment:['center', 'top'] });
aBox.onClick = function() { app.preferences.myPref = aBox.value; };

}

var myHandler = function(event) {
if (event.type == "create" && event.location == "prefs") {
doPrefs (event.object) ;

}

return { handled: false };
Yi

app.eventHandlers.push({ handler: myHandler });

close Closes the Preferences dialog.
prefObj.close (1isOK)

1sOK Pass true to simulate the user clicking OK to close the dialog, false for Cancel.

Adobe Creative Suite 2
Bridge JavaScript Reference Bridge DOM Object Reference 123

Represents a reference to a node in the browser navigation hierarchy. Thumbnail objects can represent:
e Files and folders in the local file system.

e Version Cue nodes

e URLs

e Script-defined navigation nodes associated with script-defined browse schemes.

A thumbnail’s browse scheme determines what is shown in the Content pane when the user selects that

thumbnail in the Folders or Favorites pane. The Content pane can show a filesystem hierarchy or a local or
remote web page. A thumbnail can use a predefined or script-defined browse scheme.

To create a new Thumbnail object, use the new constructor:

new Thumbnail (nodel, namel) ;

node The node specifier. One of the following:

o AFile Object or Folder Object for file or folder that exists on the local file system. If the
referenced file or folder does not exist, causes a run-time error. This object becomes the
value of the new object’s spec property.

e A Thumbnail object. This creates a new Thumbnail object that references the same node.
See Multiple references to the same node.

e A path to alocal or remote file, folder, or page, which becomes the value of the new
object’s path property. The path can include a browse-scheme specifier; see Node

specifiers below.

name Optional. A localizable string to use as the display name for the thumbnail icon in the
browser window. For script-defined browse schemes, the browse scheme must be
registered before the thumbnail is created for the name to take effect. If not supplied, the
display name defaults to the path or spec value.

Caution: For a Thumbnail object associated with aFile Object or Folder Object, using the
name argument renames the folder or file on disk.

A node specifier that specifies a predefined or script-defined browse scheme takes the form:

[browseProtocol://]lpath

The browseProtocol can be script-defined or predefined. The predefined browse scheme protocols
include:

e http://, https:// (for web browsing): Creates a thumbnail with displayMode="web" that
references the URL in path, which becomes the value of displayPath. When selected, navigates to
the web page associated with the URL and displays it in the Content pane. If the URL does not exist,
causes a nonfatal error, such as "Could not locate remote server."

Adobe Creative Suite 2
Bridge JavaScript Reference Bridge DOM Object Reference 124

A script-defined browseProtocol is the name of a browse scheme that you have registered using the
App Object’s registerBrowseScheme method. In this case, the path for the top-level node in the browse
scheme hierarchy must be root. See Script-Defined Browse Schemes.

» Examples of thumbnail creation

// references a folder

var myLocation = new Thumbnail (Folder ("/C/myFolder")) ;

// a second reference to the same node

var newLocation = new Thumbnail (myLocation) ;

// references a file, and renames the file on disk

var myFile = new Thumbnail (File("/C/myFolder/file.txt"), "myfile.txt");
// references a URL

var myURL = new Thumbnail ("http://www.adobe.com") ;

Multiple Thumbnail objects can refer to the same node. In JavaScript terminology, two such objects are
equal, but not identical. That is, if you declare two Thumbnail objects that point to the same file, the
JavaScript equality operator "=="returns true, but the identity operator "==="returns false. Any
arbitrary properties assigned to one of the objects are not be reflected in the other.

This example creates two Thumbnail objects that reference the same node, and shows that an arbitrary
property defined on one cannot be referenced on the other.

var tl = new Thumbnail (File("/C/Temp/afile.txt") ;
var t2 = new Thumbnail (File("/C/Temp/afile.txt") ;

tl == t2; // returns true
tl === t2; // returns false

tl.newNote = "a note for the thumbnail";
alert (t2.newNote); // t2.newNote is undefined.

For a thumbnail that references a File object, however, you can assign arbitrary data to the metadata
object, which can be referenced from either object.

var tl = new Thumbnail (File("/C/myFolder/myfile.txt")) ;
var t2 = new Thumbnail (File("/C/myFolder/myfile.txt")) ;
tl.newProperty = "arbitrary value";

var val = t2.newProperty; // result is undefined.
//properties created directly in thumbnail are not shared
var md = tl.metadata;

md.namespace = "http://ns.adobe.com/photoshop/1.0/";
md.SpecialNotes = "Special notes for this file.";

// You can access SpecialNotes from either Thumbnail object
t2.metadata.namespace = "http://ns.adobe.com/photoshop/1.0/";
alert ("Special Notes: ", t2.metadata.SpecialNotes) ;

The spec values of the two thumbnail objects reference different File objects, and so are not equal.
However, the two File objects reference the same file, as shown by inspecting the string value:

tl.spec == t2.spec; //returns false
tl.spec.toString() == t2.spec.toString(); // returns true

Bridge JavaScript Reference

Adobe Creative Suite 2

Bridge DOM Object Reference 125

aliasType

children

container

creationDate

displayMode

displayPath

hidden

lastModifiedDate

String

Array of
Thumbnail

Boolean

Date

String

String

Boolean

Date

If the value of type is alias, the kind of target this thumbnail
represents, one of:

file

folder
Otherwise undefined.

An array of Thumbnail objects for the children of this
container node. When this object references a folder, the
children are the thumbnails that reference the contents of
the folder. By default, when the thumbnail is selected in a
navigation pane, its children are shown in the Content pane.
Read only.

Note: This array is not populated until the loaded event has
occurred for the document.

The list of children is cached on the first reference so that
subsequent references do not result in further disk access. To
ensure that the list is up to date (for example after you have
performed operations that may have resulted in children
being deleted, added, or renamed) call the refresh method
to make sure the list is updated on the next access. You do
not need to refresh if you changed the content or properties
of a child thumbnail.

When true, the node is a container. Folder thumbnails, web
browser thumbnails, Version Cue thumbnails and
thumbnails with script-defined browse schemes are all
containers. Only container nodes can appear in the Folders
and Favorites panes. Does not indicate whether the node
currently has any children, just whether it can have them.
Read only.

Date the referenced file or folder was created, if it can be
determined. Read only.

The display mode of the Content pane when this thumbnail
is selected in a navigation pane. Read/Write. One of:

filesystem (default): The Content pane shows the
contents of a folder.

web: The Content pane shows the HTML page referenced
by displayPath.

The path to afile that is displayed in the Content pane when
this thumbnail is selected in a navigation pane. Read/Write.
Default is the value of path.

When true, this thumbnail is hidden. When false (the
default), it is shown. Read Only

Date the referenced file or folder was last modified, if it can
be determined. Read only.

Bridge JavaScript Reference

Adobe Creative Suite 2

Bridge DOM Object Reference 126

location String Whether the thumbnail is associated with a local file-system
object or a Version Cue node (which can have both a local
and remote replica). One of:
local
unknown
VersionCue
metadata Metadata Immediately returns the Metadata Object associated with
this thumbnail, if it can be found. Read only.
mimeType String The referenced file’s MIME type, if it can be determined;
otherwise, the empty string. Read only.
name String The label displayed for the thumbnail. Read/Write. Default is
the path value.
parent Thumbnail The Thurbnail object for the parent node of this thumbnail.
The value is undefined for thumbnails added to the root level
of app. favorites. This object is in the children array of its
parent. Read/Write.
path String A node specifier in the form:
[browseProtocol://]path
Set when the object is created, using the first argument to
the Thumbnail object constructor. Read only.
spec File, Folder A File Object or Folder Object for this thumbnail’s node. If the
thumbnail does not encapsulate a file or folder, the value is
undefined. Read only.
synchronousMetadata Metadata Waits up to three seconds to return the Metadata Object
associated with this thumbnail, if it can be found. Read only.
type String The type of node this thumbnail references. One of:
file
folder
alias
package
other
copyTo Creates a new Thumbnail Object that references the same

thumbnailObj.copyTo (target)

target

node as this one, and adds it to the target thumbnail’s
children list. Returns true on success.

var thumbnail =

new Thumbnail (File.openDialog ("Source?")) ;
var target =

new Thumbnail (Folder.selectDialog ("Target?")) ;
if (thumbnail.copyTo (target)) {

Window.alert ("copy succeeded") ;
}

else Window.alert ("copy failed");

A Thumbnail Object to be the parent of the new copy.

Bridge JavaScript Reference

Adobe Creative Suite 2

Bridge DOM Object Reference 127

moveTo
thumbnailObj.moveTo (target)

Removes this thumbnail from its current parent, and adds it to
the target thumbnail’s children list. Returns true on success.

Note: If the thumbnail refers to an existing file or folder, this
moves the referenced file or folder on disk.

var thumbnail =

new Thumbnail (File.openDialog ("Source?")) ;
var target =

new Thumbnail (Folder.selectDialog ("Target?")) ;
if (thumbnail.moveTo (target)) {

Window.alert ("move succeeded") ;
}

else Window.alert ("move failed");

target A Thumbnail Object to be the parent of the new copy.

open
thumbnailObj.open ()

openWith
thumbnailObj.openWith (appPath)

Launches the file referenced by this thumbnail in the
appropriate application (such as Photoshop for JPEG files). This
is the same as choosing Open from the File or context menu,
or double-clicking the thumbnail icon in the Content pane.

If this thumbnail references a JSX file, runs the scriptin its
target application, or, if no target is specified, in the
ExtendScript Toolkit. See Preprocessor directives.

If this thumbnail references a folder, navigates to that folder in
the Folders pane—that is, sets document . thumbnail to this
thumbnail.

Returns true on success.

Launches the file referenced by this thumbnail in the specified
application. Returns true on success.

appPath A platform-specific path string to the application, as returned in appPath
property of the openWith event object when a user makes a selection of
thumbnails in the Content pane, then selects an application from the Open
With submenu of the File or context menu.

refresh
thumbnailObj.refresh ()

Refreshes the node’s internal information to reflect the current
state of its referenced file or folder. For non-container
thumbnails, returns true if the node has changed since the last
access. For container thumbnails, marks the Thumbnail object
so that the next access to the children property causes a disk
access to update the cached list of children, and returns true if
the node has been renamed since the last access.

Adobe Creative Suite 2
Bridge DOM Object Reference 128

Bridge JavaScript Reference

Deletes this Thumbnail object, and also deletes the file or
folder associated with the thumbnail from the disk. Returns

true ON sUCcess.

remove
thumbnailObj.remove ()

» Example

var tn = new Thumbnail (File.openDialog("Delete?")) ;

if (!tn.remove()) {
Window.alert ("Thumbnail deletion failed");

}
If the value of type is alias, returns a Thumbnail object for the

resolve
target of the alias, or, if the alias cannot be resolved, returns

thumbnailObj.resolve ()
undefined.

If the type is not alias, returns this Thumbnail object.

File and Folder Object Reference

Because path name syntax is very different in Windows, Mac OS, and UNIX, the File and Folder objects
are defined to provide platform-independent access to the underlying file system. A File objectis
associated with a disk file; a Folder object with a directory or folder.

e The Folder object supports file-system functionality such as traversing the hierarchy, creating,
renaming, or removing files, or resolving file aliases.

e The File object supports I/O functions to read or write files.

File and Folder objects can be used anywhere a path name is required, such as in properties and
arguments for files and folders.

For a description of the pathname syntax and object usage, see Chapter 4, “Using File and Folder Objects.
This chapter provides detail about the classes and objects, their properties and methods, and the
supported encoding names:

e File Object

e Folder Object
e File and Folder Error Messages

e File and Folder Supported Encoding Names

Represents a file in the local file system in an platform-independent manner. All properties and methods
resolve file system aliases automatically and act on the original file unless otherwise noted.

To create a File object, use the File function or the new operator. The constructor accepts full or partial
path names, and returns the new object. The CRLF sequence for the file is preset to the system default, and
the encoding is preset to the default system encoding.

File ([path]); //can return a Folder object
new File ([path]); //always returns a File object

path Optional. The absolute or relative path to the file associated with this object, specified in
platform-specific or URI format; see Specifying Paths. The value stored in the object is the
absolute path.

The path need not refer to an existing file. If not supplied, a temporary name is generated.
If the path refers to an existing folder:
e The rilefunction returns a Folder object instead of a File object.

e The new operator returns a File object for a nonexisting file with the same name.

129

Adobe Creative Suite 2
Bridge JavaScript Reference File and Folder Object Reference 130

This property is available as a static property of the File class. It is not necessary to create an instance to
access it.

fs String | The name of the file system. Read only. One of windows, Macintosh, Or Unix.

These functions are available as static methods of the File class. It is not necessary to create an instance

to call them.
decode Decodes the specified string as required by RFC 2396 and
File.decode (what) returns the decoded string.
what String. The encoded string to decode.
All special characters must be encoded in UTF-8 and stored as escaped
characters starting with the percent sign followed by two hexadecimal digits. For
example, the string "my%20file" is decoded as "my file"
Special characters are those with a numeric value greater than 127, except the
following:
/= _ b~ ()
encode Encodes the specified string as required by RFC 2396 and
File.encode (what) returns the encoded string.
All special characters are encoded in UTF-8 and stored as
escaped characters starting with the percent sign followed by
two hexadecimal digits. For example, the string "my file"is
encoded as "my%20file".
Special characters are those with a numeric value greater than
127, except the following:
/o= b~ ()
what String. The string to encode.
isEncodingAvailable Returns true if your system supports the specified encoding,
File.isEncodingAvailable (name) false otherwise.

name String. The encoding name.

Bridge JavaScript Reference

Adobe Creative Suite 2
File and Folder Object Reference 131

openDialog

File.openDialog
([prompt] [, select])

Opens the built-in platform-specific file-browsing dialog in
which a user can select an existing file to open.

If the user clicks OK, returns a File object for the selected file.
If the user cancels, returns nu11.

prompt Optional. A string containing the prompt text, if the dialog allows a prompt.

select Optional. A file or files to be preselected when the dialog opens:

saveDialog

File.saveDialog
([prompt] [, select])

In Windows, a string containing a comma-separated list of file types with
descriptive text, to be displayed in the bottom of the dialog as a drop-down
list from which the user can select which types of files to display.

Each element starts with the descriptive text, followed by a colon and the file
search masks for this text, separated by semicolons. For example, to display
two choices, one labeled Text Files that allows selection of text files with
extensions .TxT and .poc, and the other labeled All files that allows selection
of all files:

Text Files:*.TXT;*.DOC,All files:*
In Mac OS, a string containing the name of a function defined in the current
JavaScript scope that takes a File object argument. The function is called for
each file about to be displayed in the dialog, and the file is displayed only
when the function returns true.

Opens the built-in platform-specific file-browsing dialog in
which a user can select an existing file location to which to
save this file.

If the user clicks OK, returns a File object for the selected file,
and overwrites the existing file. If the user cancels, returns
null.

prompt Optional. A string containing the prompt text, if the dialog allows a prompt.

select Optional. A file or files to be preselected when the dialog opens:

In Windows, a string containing a comma-separated list of file types with
descriptive text, to be displayed in the bottom of the dialog as a drop-down
list from which the user can select which types of files to display.

Each element starts with the descriptive text, followed by a colon and the file
search masks for this text, separated by semicolons. For example, to display
two choices, one labeled Text Files that allows selection of text files with
extensions .TxTand .Doc, and the other labeled All files that allows selection
of all files:

Text Files:*.TXT;*.DOC,All files:*
In Mac OS, a string containing the name of a function defined in the current
JavaScript scope that takes a File object argument. The function is called for
each file about to be displayed in the dialog, and the file is displayed only
when the function returns true.

Bridge JavaScript Reference

Adobe Creative Suite 2
File and Folder Object Reference 132

These properties are available for File objects.

absoluteURI

alias

created

creator

encoding

eof

error

exists

fsName

hidden

length

lineFeed

modified

parent

String

Boolean

Date

String

String

Boolean

String

Boolean

String

Boolean

Number

String

Date

String

Folder

The full path name for the referenced file in URI notation. Read only.

When true, the object refers to a file system alias or shortcut. Read
only.

The creation date of the referenced file, or nu11 if the object does not
refer to a file on disk. Read only.

The Mac OS file creator as a four-character string. In Windows or UNIX,
value is "2???" Read only.

Gets or sets the encoding for subsequent read/write operations. One
of the encoding constants listed in File and Folder Supported
Encoding Names. If the value is not recognized, uses the system
default encoding.

A special encoder, BINARY, is used to read binary files. It stores each
byte of the file as one Unicode character regardless of any encoding.
When writing, the lower byte of each Unicode character is treated as a
single byte to write.

When true, a read attempt caused the current position to be beyond
the end of the file, or the file is not open. Read only.

A message describing the last file system error; see File and Folder
Error Messages. Setting this value clears any error message and resets
the error bit for opened files.

When true, the path name of this object refers to an existing file. Read
only.

The platform-specific name of the referenced file as a full path name.
Read only.

When true, the file is not shown in the platform-specific file browser.
Read/write. If the object references a file-system alias or shortcut, the
flag is altered on the alias, not on the original file.

The size of the file in bytes. Can be set only for a file that is not open, in
which case it truncates or pads the file with 0-bytes to the new length.

How line feed characters are written. One of:

windows: Windows style
mac: Mac OS style
unix: UNIX style

The date of the referenced file’s last modification, or nu11 if the object
does not refer to a file on disk. Read only.

The name of the referenced file without the path specification. Read
only.

The Folder object for the folder that contains this file. Read only.

Adobe Creative Suite 2

Bridge JavaScript Reference File and Folder Object Reference 133

path String The path portion of the absolute URI, or the empty string If the name
does not have a path. Read only.

readonly Boolean When true, prevents the file from being altered or deleted. If the
referenced file is a file-system alias or shortcut, the flag is altered on
the alias, not on the original file.

relativeURI | String The path name for the referenced file in URI notation, relative to the
current folder. Read only.

type String The Mac OS file type as a four-character string. In Windows and UNIX,
the value is "2222". Read only.

These functions are available for File objects.

close Closes this open file. Returns true on success, false if there are I/0
fileObj.close () errors.

copy Copies this object’s referenced file to the specified target location.
fileObj.copy (target) Resolves any aliases to find the source file. If a file exists at the target

location, it is overwritten. Returns true if the copy was successful,
false otherwise.

target A string with the URI path to the target location, or a File object that references the
target location.

createAlias Makes this file into a file-system alias or shortcut to the specified file.
fileObj.createAlias The referenced file for this object must exist on disk. Returns true if
(toFile, [isFinderalias]) the operation was successful, false otherwise.
toFile The File object for the target of the new alias.

isFinderAlias Optional, Mac OS only. When true, the alias is created as a legacy Finder alias. When
false (the default), the alias is created as a UNIX symlink.

execute Opens this file using the appropriate application (as if it had been
fileObj.execute () double-clicked in a file browser). You can use this method to run
scripts, launch applications, and so on.

Returns true immediately if the application launch was successful.

getRelativeURI Returns a string containing the URI for this file or folder relative to the
fileOb7j.getRelativeURI specified base path, in URI notation. If no base path is supplied,
([basePath]) returns the URI relative to the path of the current folder.
basePath Optional. A string containing the base path for the relative URI. Default is the current

folder.

Bridge JavaScript Reference

Adobe Creative Suite 2
File and Folder Object Reference 134

open
fileObj.open
(model, typel [, creator])

Open the file for subsequent read/write operations. The method
resolves any aliases to find the file. Returns true if the file has been
opened successfully, false otherwise.

The method attempts to detect the encoding of the open file. It reads
a few bytes at the current location and tries to detect the Byte Order
Mark character oxrrFE. If found, the current position is advanced
behind the detected character and the encoding property is set to
one of the strings UCS-2BE, UCS-2LE, UCS4-BE, UCS-4LE, or UTF-8. If the
marker character is not found, it checks for zero bytes at the current
location and makes an assumption about one of the above formats
(except UTF-8). If everything fails, the encoding property is set to the
system encoding.

Note: Be careful about opening a file more than once. The operating
system usually permits you to do so, but if you start writing to
the file using two different File objects, you can destroy your
data.

mode A string indicating the read/write mode. One of:

r: (read) Opens for reading. If the file does not exist or cannot be found, the call

fails.

w: (write) Opens a file for writing. If the file exists, its contents are destroyed. If the
file does not exist, creates a new, empty file.
e: (edit) Opens an existing file for reading and writing.

type Optional. In Mac OS, the type of a newly created file, a 4-character string. Ignored in
Windows and UNIX.

creator Optional. In Mac OS, the creator of a newly created file, a 4-character string. Ignored
in Windows and UNIX.

Bridge JavaScript Reference

Adobe Creative Suite 2
File and Folder Object Reference 135

openDlg
fileOb7.

Opens the built-in platform-specific file-browsing dialog, in which the
OpenDlg user can select an existing file to open. If the user clicks OK, returns a

([prompt] [, select]) Fileor Folder object for the selected file or folder. If the user cancels,

prompt

select

read
fileOb7.

chars

readch
fileOb7.

readln
fileOby.

remove
fileObj.

returns null.

Differs from the class method openbialog () in that it presets the
current folder to this rile object’s parent folder and the current file to
this object’s associated file.

Optional. A string containing the prompt text, if the dialog allows a prompt.

Optional. A file or files to be preselected when the dialog opens:

e In Windows, a string containing a comma-separated list of file types with
descriptive text, to be displayed in the bottom of the dialog as a drop-down list
from which the user can select which types of files to display.

Each element starts with the descriptive text, followed by a colon and the file
search masks for this text, separated by semicolons. For example, to display two
choices, one labeled Text Files that allows selection of text files with extensions
.TxTand .poc, and the other labeled All files that allows selection of all files:

Text Files:*.TXT;*.DOC,All files:*

e InMac OS, a string containing the name of a function defined in the current
JavaScript scope that takes a File object argument. The function is called for
each file about to be displayed in the dialog, and the file is displayed only when
the function returns true.

Reads the contents of the file starting at the current position, and
read ([chars]) returns a string that contains up to the specified number of
characters.

Optional. An integer specifying the number of characters to read. By default, reads
from the current position to the end of the file. If the file is encoded, multiple bytes
might be read to create single Unicode characters.

Reads a single text character from the file at the current position, and

readch () returns it in a string. Line feeds are recognized as CR, LF, CRLF, Of LFCR
pairs. If the file is encoded, multiple bytes might be read to create
single Unicode characters.

Reads a single line of text from the file at the current position, and

readln () returns it in a string. Line feeds are recognized as CR, LF, CRLF, Or LFCR
pairs. If the file is encoded, multiple bytes might be read to create
single Unicode characters.

Deletes the file associated with this object from disk, immediately,
remove () without moving it to the system trash. Returns true if the file is
deleted successfully.

Does not resolve aliases; instead, deletes the referenced alias or
shortcut file itself.

Note: Cannot be undone. It is recommended that you prompt the
user for permission before deleting.

Adobe Creative Suite 2
Bridge JavaScript Reference File and Folder Object Reference 136

rename Renames the associated file. Returns true on success.

fileObj.rename (newName) Does not resolve aliases, but renames the referenced alias or shortcut

file itself.
newName The new file or folder name, with no path.
resolve If this object references an alias or shortcut, this method resolves that
fileObj.resolve () alias and returns a new rile object that references the file-system

element to which the alias resolves.

Returns nu11 if this object does not reference an alias, or if the alias
cannot be resolved.

saveDlg Opens the built-in platform-specific file-browsing dialog, in which the
fileObj.saveDlg user can select an existing file location at which to save this file. If the
([prompt] [, preset]) user clicks OK, returns a File or Folder object for the selected file or

folder. If the user cancels, returns nul1l.

Differs from the class method savebialog() in that it presets the
current folder to this File object’s parent folder and the file to this
object’s associated file, and prompts the user to confirm before
overwriting an existing file.

prompt Optional. A string containing the prompt text, if the dialog allows a prompt.

preset Optional. A file or files to be preselected when the dialog opens:

e In Windows, a string containing a comma-separated list of file types with
descriptive text, to be displayed in the bottom of the dialog as a drop-down list
from which the user can select which types of files to display.

Each element starts with the descriptive text, followed by a colon and the file
search masks for this text, separated by semicolons. For example, to display two
choices, one labeled Text Files that allows selection of text files with extensions
.7xT and .poc, and the other labeled All files that allows selection of all files:

Text Files:*.TXT;*.DOC,All files:*

e In Mac OS, a string containing the name of a function defined in the current
JavaScript scope that takes a File object argument. The function is called for
each file about to be displayed in the dialog, and the file is displayed only when
the function returns true.

seek Seeks to the specified position in the file, and returns true if the
fileObj.seek (pos, mode) position was changed. The new position cannot be less than 0 or
greater than the current file size.

pos The new current position in the file as an offset in bytes from the start, current
position, or end, depending on the mode.

mode The seek mode, one of:

0: Seek to absolute position, where pos=0 is the first byte of the file.
1: Seek relative to the current position.
2. Seek backward from the end of the file.

tell Returns the current position as a byte offset from the start of the file.
fileObj.tell ()

Adobe Creative Suite 2

Bridge JavaScript Reference File and Folder Object Reference 137
write Writes the specified text to the file at the current position. Returns
fileObj.write true ON suUcCcess.

text[, text...]... . - . . .
(textl, tex]) For encoded files, writing a single Unicode character may write

multiple bytes.

Note: Be careful not to write to a file that is open in another
application or object, as this can overwrite existing data.

text One or more strings to write, which are concatenated to form a single string.
writeln Writes the specified text to the file at the current position, and
fileObj.writeln appends a Line Feed sequence in the style specified by the 1inefeed
(text[, text...]...) property. Returns true on success.

For encoded files, writing a single Unicode character may write
multiple bytes.

Note: Be careful not to write to a file that is open in another
application or object, as this can overwrite existing data.

text One or more strings to write, which are concatenated to form a single string.

Adobe Creative Suite 2
Bridge JavaScript Reference File and Folder Object Reference 138

Represents a file-system folder or directory in a platform-independent manner. All properties and
methods resolve file system aliases automatically and act on the original file unless otherwise noted.

To create a Folder object, use the Folder function or the new operator. The constructor accepts full or
partial path names, and returns the new object.

Folder ([path]); //can return a File object
new Folder ([pathl); //always returns a Folder object

path Optional. The absolute or relative path to the folder associated with this object, specified in
URI format; see Specifying Paths. The value stored in the object is the absolute path.

The path need not refer to an existing folder. If not supplied, a temporary name is generated.
If the path refers to an existing file:
e The Folder function returns a File object instead of a Folder object.

e The new operator returns a Folder object for a nonexisting folder with the same name.

These properties are available as static properties of the Folder class. It is not necessary to create an
instance to access them.

appData Folder A Folder object for the folder that contains application data for all users.
Read only.

e In Windows, the value of sapppaTas (by default, c: \Documents and
Settings\All Users\Application Data)

e InMacOS, /Library/Application Support

commonFiles Folder A Folder object for the folder that contains files common to all
programs. Read only.

e In Windows, the value of $commonProgramriless (by default,
C:\Program Files\Common Files)

e InMacOS,/Library/Application Support

current Folder A Folder object for the current folder. Assign either a Folder object or a
string containing the new path name to set the current folder.

fs String The name of the file system. Read only. One of windows, Macintosh, or
Unix.
myDocuments Folder A Folder object for the default document folder. Read only.

e InWindows, C:\Documents and Settings\username\My Documents

e InMac OS, ~/Documents

startup Folder A Folder object for the folder containing the executable image of the
running application. Read only.

Adobe Creative Suite 2
Bridge JavaScript Reference File and Folder Object Reference 139

system Folder A Folder object for the folder containing the operating system files.
Read only.

e In Windows, the value of $windir% (by default, c: \windows)

e InMacOS,/system

temp Folder A Folder object for the default folder for temporary files. Read only.
trash Folder A Folder object for the folder containing deleted items. Read only.
userData Folder A Folder object for the folder that contains application data for the

current user. Read only.

e InWindows, the value of sapppaTas (by default, ¢: \Documents and
Settings\username\Application Data)

e InMacOS, ~/Library/Application Support

These functions are available as a static methods of the Folder class. It is not necessary to create an
instance in order to call them.

decode Decodes the specified string as required by RFC 2396 and
Folder.decode (what) returns the decoded string.
what String. The encoded string to decode.

All special characters must be encoded in UTF-8 and stored as escaped
characters starting with the percent sign followed by two hexadecimal digits. For
example, the string "my%20file" is decoded as "my file"

Special characters are those with a numeric value greater than 127, except the

following:
/- _ o b~ ()
encode Encodes the specified string as required by RFC 2396 and
Folder.encode (what) returns the encoded string.
All special characters are encoded in UTF-8 and stored as
escaped characters starting with the percent sign followed by
two hexadecimal digits. For example, the string "my file"is
encoded as "my%20file"
Special characters are those with a numeric value greater than
127, except the following:
/o= _ .U~k ()
what String. The string to encode.
isEncodingAvailable Returns true if your system supports the specified encoding,
File.isEncodingAvailable (name) false otherwise.

name String. The encoding name.

Bridge JavaScript Reference

Adobe Creative Suite 2
File and Folder Object Reference 140

selectDialog

Folder.selectDialog
([prompt] [, preset])

prompt

preset

Opens the built-in platform-specific file-browsing dialog. If the
user clicks OK, returns a Folder object for the selected folder. If
the user cancels, returns nu11.

Differs from the object method selectDlg () in that it does not
preselect a folder.

Optional. A string containing the prompt text, if the dialog allows a prompt.

Optional. A Folder object for a folder to be preselected when the dialog opens.

These properties are available for Folder objects.

absoluteURI

alias

created

error

exists

fsName

modified

parent

path

relativeURI

String

Boolean

Date

String

Boolean

String

Date

String

Folder

String

String

The full path name for the referenced folder in URI notation. Read only.

When true, the object refers to a file system alias or shortcut. Read
only.

The creation date of the referenced folder, or nu11 if the object does
not refer to a folder on disk. Read only.

A message describing the last file system error; see File and Folder
Error Messages. Setting this value clears any error message and resets
the error bit for opened folders.

When true, the path name of this object refers to an existing folder.
Read only.

The platform-specific name of the referenced folder as a full path
name. Read only.

The date of the referenced folder's last modification, or nu11 if the
object does not refer to a folder on disk. Read only.

The name of the referenced folder without the path specification. Read
only.

The Folder object for the folder that contains this folder, or nui1 if this
object refers to the root folder of a volume. Read only.

The path portion of the absolute URI, or the empty string If the name
does not have a path. Read only.

The path name for the referenced folder in URI notation, relative to the
current folder. Read only.

Adobe Creative Suite 2
Bridge JavaScript Reference File and Folder Object Reference 141

These functions are available for Folder objects.

create Creates a folder at the location to which the path name points.
folderObj.create () Returns true if the folder was created successfully.

execute Opens this folder in the file browser (as if it had been double-clicked
folderObj.execute () in afile browser). Returns true immediately if the folder was opened

successfully.

getFiles Returns an array of File and Folder objects for the contents of this
folderObj.getFiles ([mask]) folder, filtered by the supplied mask, or nu11 if this object’s
referenced folder does not exist.

mask Optional. A search mask for file names. A string that can contain question mark (?)
and asterisk (*) wild cards. Default is "=, which matches all file names.

Can also be the name of a function that takes a File or Folder object as its
argument. It is called for each file or folder found in the search; if it returns true, the
object is added to the return array.

Note: In Windows, all aliases end with the extension . 1nk, which is stripped from
the file name when found to preserve compatibility with other operating
systems. You can search for all aliases by supplying the search mask "*.1nk",
but note that such code is not portable.

getRelativeURI Returns a string containing the URI for this folder relative to the
folderObj.getRelativeURT specified base path, in URI notation. If no base path is supplied,
([basePath]) returns the URI relative to the path of the current folder.
basePath Optional. A string containing the base path for the relative URI. Default is the current
folder.
remove Deletes the empty folder associated with this object from disk,
folderObj.remove () immediately, without moving it to the system trash. Returns true if

the folder is deleted successfully.
e Folders must be empty before they can be deleted.

e Does not resolve aliases; instead, deletes the referenced alias or
shortcut file itself.

Note: Cannot be undone. It is recommended that you prompt the
user for permission before deleting.

rename Renames the associated folder. Returns true on success.

folderobj.rename (newName) e Does not resolve aliases; instead, renames the referenced alias or

shortcut file itself.

newName The new folder name, with no path.
resolve If this object references an alias or shortcut, this method resolves
folderObj.resolve () that alias and returns a new Folder object that references the

file-system element to which the alias resolves.

Returns nu11 if this object does not reference an alias, or if the alias
cannot be resolved.

Adobe Creative Suite 2

Bridge JavaScript Reference File and Folder Object Reference 142
selectDlg Opens the built-in platform-specific file-browsing dialog. If the user
folderObj.selectDlg clicks OK, returns a File or Folder object for the selected file or

([prompt] [, preset]) folder. If the user cancels, returns null.
Differs from the class method selectbialog() in that it preselects
this folder.

prompt Optional. A string containing the prompt text, if the dialog allows a prompt.

preset Optional. A Folder object for a folder to be preselected when the dialog opens.

Adobe Creative Suite 2

Bridge JavaScript Reference

File and Folder Object Reference

143

The following messages can be returned in the error property.

File or folder does not exist
File or folder already exists
I/0 device is not open

Read past EOF

Conversion error

Partial multibyte character found
Permission denied

Cannot change directory
Cannot create

Cannot rename

Cannot delete

I/0 error

Cannot set size

Cannot open

Cannot close

Read error

Write error

Cannot seek

Cannot execute

The file or folder does not exist, but the parent folder exists.

The file or folder already exists.

An I/0 operation was attempted on a file that was closed.
Attempt to read beyond the end of a file.

The content of the file cannot be converted to Unicode.
The character encoding of the file data has errors.

The OS did not allow the attempted operation.

Cannot change the current folder.
Cannot create a folder.

Cannot rename a file or folder.
Cannot delete a file or folder.
Unspecified 1/0O error.

Setting the file size failed.
Opening of a file failed.

Closing a file failed.

Reading from a file failed.

Writing to a file failed.

Seek failure.

Unable to execute the specified file.

Adobe Creative Suite 2
Bridge JavaScript Reference File and Folder Object Reference 144

The following list of names is a basic set of encoding names supported by the File object. Some of the
character encoders are built in, while the operating system is queried for most of the other encoders.
Depending on the language packs installed, some of the encodings may not be available. Names that refer
to the same encoding are listed in one line. Underlines are replaced with dashes before matching an
encoding name.

The File object processes an extended Unicode character with a value greater that 65535 as a Unicode
surrogate pair (two characters in the range between 0xD700-0xDFFF).

Built-in encodings are:

US-ASCII, ASCII,IS0646-US,I SO-646.IRV:1991, ISO-IR-6,
ANST-X3.4-1968,CP367,IBM367,US,IS0646.1991-IRV
UCS-2,UCS2, IS0-10646-UCS-2

UCS2LE, UCS-2LE, ISO-10646-UCS-2LE

UCS2BE, UCS-2BE, IS0-10646-UCS-2BE

UCS-4,UCS4, ISO-10646-UCS-4

UCS4LE, UCS-4LE, ISO-10646-UCS-4LE

UCS4BE, UCS-4BE, IS0-10646-UCS-4BE

UTF-8, UTF8, UNICODE-1-1-UTF-8, UNICODE-2-0-UTF-8, X~-UNICODE-2-0-UTF-8
UTF16,UTF-16, IS0-10646-UTF-16

UTF1l6LE,UTF-16LE, ISO-10646-UTF-16LE

UTF16BE, UTF-16BE, ISO-10646-UTF-16BE
CP1252,WINDOWS-1252, MS-ANSI
IS0-8859-1,1I50-8859-1,I50-8859-1:1987,IS0-IR-100, LATINL
MACINTOSH, X-MAC-ROMAN

BINARY

The ASCll encoder raises errors for characters greater than 127, and the BINARY encoder simply converts
between bytes and Unicode characters by using the lower 8 bits. The latter encoder is convenient for
reading and writing binary data.

In Windows, all encodings use code pages, which are assigned numeric values. The usual Western
character set that Windows uses, for example, is the code page 1252. You can select Windows code pages
by prepending the number of the code page with "CP" or "WINDOWS": for example, "CP1252" for the code
page 1252. The File object has many other built-in encoding names that match predefined code page
numbers. If a code page is not present, the encoding cannot be selected.

In Mac OS, you can select encoders by name rather than by code page number. The File object queries
Mac OS directly for an encoder. As far as Mac OS character sets are identical with Windows code pages,
Mac OS also knows the Windows code page numbers.

In UNIX, the number of available encoders depends on the installation of the i conv library.

Common encoding names
The following encoding names are implemented both in Windows and in Mac OS:

UTF-7,UTF7,UNICODE-1-1-UTF-7,X-UNICODE-2-0-UTF-7
IS0-8859-2,I50-8859-2,I50-8859-2:1987,IS0O-IR-101, LATIN2
IS0-8859-3,IS0-8859-3,I50-8859-3:1988, ISO-IR-109, LATIN3
IS0-8859-4,1I50-8859-4,I50-8859-4:1988,IS0O-IR-110, LATIN4, BALTIC
IS0-8859-5,I50-8859-5,I50-8859-5:1988,ISO-IR-144,CYRILLIC
IS0-8859-6,IS0-8859-6,I50-8859-6:1987,ISO-IR-127,ECMA-114,ASMO-708, ARABIC
IS0-8859-7,I50-8859-7,I50-8859-7:1987,IS0-IR-126,ECMA-118, ELOT-928, GREEK8, GREEK
IS0-8859-8,IS0-8859-8,IS50-8859-8:1988, ISO-IR-138, HEBREW

Adobe Creative Suite 2
Bridge JavaScript Reference File and Folder Object Reference 145

IS0-8859-9,1I50-8859-9,I50-8859-9:1989,IS0-IR-148, LATINS, TURKISH
IS0-8859-10,I50-8859-10,IS0-8859-10:1992, ISO-IR-157, LATING6
IS0-8859-13,1I50-8859-13, ISO-IR-179, LATIN7Y
IS0-8859-14,150-8859-14,1S0-8859-14,1S0-8859-14:1998,ISO-IR-199, LATINS
IS0-8859-15,150-8859-15,IS0-8859-15:1998, ISO-IR-203
IS0-8859-16,I50-885,IS0-885,MS-EE

CP850, WINDOWS-850, IBM850

CP866, WINDOWS-866, IBM866
CP932,WINDOWS-932, SJIS, SHIFT-JIS,X-SJIS,X-MS-SJIS,MS-SJIS, MS-KANJT
CP936,WINDOWS-936, GBK, WINDOWS-936,GB2312,GB-2312-80, ISO-IR-58, CHINESE
CP949,WINDOWS-949, UHC,KSC-5601, KS-C-5601-1987,KS-C-5601-1989, ISO-IR-149, KOREAN
CP950, WINDOWS-950, BIG5, BIG-5, BIG-FIVE, BIGFIVE, CN-BIG5, X-X-BIG5
CP1251, WINDOWS-1251, MS-CYRL

CP1252,WINDOWS-1252, MS-ANSI

CP1253,WINDOWS-1253, MS-GREEK

CP1254 , WINDOWS-1254, MS-TURK

CP1255, WINDOWS-1255, MS-HEBR

CP1256,WINDOWS-1256 , MS-ARAB

CP1257, WINDOWS-1257 , WINBALTRIM

CP1258, WINDOWS-1258

CP1361,WINDOWS-1361, JOHAB

EUC-JP, EUCJP, X-EUC-JP

EUC-KR, EUCKR, X-EUC-KR

HZ,HZ-GB-2312

X-MAC-JAPANESE

X-MAC-GREEK

X-MAC-CYRILLIC

X-MAC-LATIN

X-MAC-ICELANDIC

X-MAC-TURKISH

Additional Windows encoding names
CP437, IBM850, WINDOWS-437

CP709, WINDOWS-709, ASMO-449 , BCONV4
EBCDIC

KOI-8R

KOI-8U

1S0-2022-JP

TSO-2022-KR

Additional Mac OS encoding names
These names are alias names for encodings that Mac OS might know.

TIS-620,TIS620,TIS620-0,TIS620.2529-1,TIS620.2533-0,TIS620.2533-1,ISO-IR-166
CP874,WINDOWS-874

JP,JIS-C6220-1969-R0O, IS0646-JP, ISO-IR-14
JIS-X0201,JI8X0201-1976,X0201
JIS-X0208,JI5-X0208-1983,JIS-X0208-1990,J150208,X0208, ISO-IR-87
JIS-X0212,JI5-X0212.1990-0,JI5-X0212-1990,X0212,ISO-IR-159

CN, GB-1988-80, IS0646-CN, ISO-IR-57

ISO-IR-16,CN-GB-ISOIR165
KSC-5601,KS-C-5601-1987,KS-C-5601-1989, ISO-IR-149
EUC-CN, EUCCN, GB2312, CN-GB

EUC-TW, EUCTW, X-EUC-TW

UNIX encodings

In UNIX, the File object looks for the presence of the iconv library, and uses whatever encoding it finds
there. If you need a special encoding in UNIX, make sure that there is an iconv encoding module installed
that converts between UTF-16 (the internal format that the File object uses) and the desired encoding.

ScriptUI Object Reference

ScriptUl is a component that works with the ExtendScript JavaScript interpreter to provide JavaScript
programs with the ability to create and interact with user interface elements. It provides an object model
for windows and Ul control elements within an Adobe Creative Suite 2 application.

For an overview of the ScriptUl object model and a description of usage, see Chapter 5, “Using ScriptUl."

This chapter provides the details of the ScriptUIl classes and objects with their properties, methods, and
creation parameters.

e Window Class
e Window Object

e Control Objects
e Size and Location Objects

e LayoutManager Object

e MenuElement Object

146

Adobe Creative Suite 2
Bridge JavaScript Reference ScriptUl Object Reference 147

The window class defines these static properties and functions which are available globally through
reference to the class. Window instances created with new Window () do not have these properties and
functions.

coreVersion String The internal core version number of the ScriptUl components. Read only.

version String The main version number of the ScriptUl components. Read only.

alert Displays the localizable message string in a user alert box that

Window.alert provides an OK button. For details, see the ExtendScript alert
(messagel, title, errorIcon]) function.

The alert dialog is not intended for lengthy messages. When the
string argument is too long, the alert dialog truncates it.

confirm Displays the localizable message string in a self-sizing modal dialog
Window.confirm box with Yes and No buttons. Returns true if the user clicks Yes,
(messagel,noAsDfIt ,title]) false if the user clicks No.

For details, see the ExtendScript confirm function.

The confirmation dialog can show longer messages than the alert
and prompt dialogs, but if this string is too long, the dialog
truncates it.

find Finds and returns an existing window object, which can be a
Window. find (resourceName) window already created by a script, or a windows created by the
Window.find (type, title) application (if the application supports this case).

resourceName: A named resource that identifies a window that
the application exposes to JavaScript. (Not supported in all
ScriptUl implementations.)

type: The window creation type, dialog, palette, Or window.
Used to distinguish between windows with the same title. If
the type is unimportant, pass null or an empty string.

title: The title of the window to find.

If it finds an existing window, the method returns the
corresponding JavaScript window object. If not, it returns nui1l.

Bridge JavaScript Reference

Adobe Creative Suite 2

ScriptUl Object Reference 148

getResourceText

Window.getResourceText
(textResource)

prompt
Window.prompt
(message, preset[, title 1)

Finds and returns a text string representation of the textresource
from the host application's resource data. If no string resource
matches the textrResource name, the name is treated as literal text.
Displays a modal dialog that returns the user’s text input.

e When the user clicks OK to dismiss the dialog, the method
returns the text the user entered.

e When the user clicks the Cancel button, the method returns

null.

For details, see the ExtendScript prompt function.

To create a new Window object:

new Window (type [, title, bounds, {creation_properties}]);

type

title
bounds

creation properties

The window type. The value is:

dialog: Creates a modal dialog.
palette: Creates a modeless dialog, also called a floating palette.
window: Creates a simple window that can be used as a main

window for an application

Optional. The window title. A localizable string.
Optional. The window'’s position and size.

Optional. An object that can contain any of these properties:

resizeable: When true, the window can be resized by the user.

Default is false.
closeButton: When true, the title bar includes a button to close the

window, if the platform and window type allow it. When false,
it does not. Default is true. Not used for dialogs.

maximizeButton: When true, the title bar includes a button to
expand the window to its maximum size (typically, the entire
screen), if the platform and window type allow it. When false, it
does not. Default is false for type palette, truefor type window.
Not used for dialogs.

minimizeButton: When true, the title bar includes a button to
minimize or iconify the window, if the platform and window
type allow it. When false, it does not. Default is false for type
palette, true for type window. Main windows cannot have a
minimize button in Mac OS. Not used for dialogs.

independent: When true, a window of type window is independent
of other application windows, and can be hidden behind them
in Windows. In Mac OS, has no effect. Default is false.

Creates and returns a new window object, or null if window creation failed.

Bridge JavaScript Reference

Adobe Creative Suite 2

ScriptUl Object Reference 149

Window elements contain the following properties, in addition to those common to all ScriptUl elements:

defaultElement

cancelElement

frameBounds

framelLocation

frameSize

Object

Object

Bounds

Point

Dimension

For a window of type dialog, the control to notify when a user
types the ENTER key. By default, looks for a button whose name or
text is "ok" (case disregarded).

For a window of type dialog, the control to notify when a user
types the Esc key in Windows, or the CMD . combination in Mac
OS. By default, looks for a button whose name or text is "cancel"
(case disregarded).

A Bounds object for the boundaries of the Window's frame in
screen coordinates. The frame consists of the title bar and borders
that enclose the content region of a window, depending on the
windowing system. Read only.

A Point object for the location of the top left corner of the
Window's frame. The same as [frameBounds.x, frameBounds.y].
Set this value to move the window frame to the specified location
on the screen. The frameBounds value changes accordingly.

A Dimension object for the size and location of the Window's frame
in screen coordinates. Read only.

Bridge JavaScript Reference

Adobe Creative Suite 2

ScriptUl Object Reference 150

The following table shows properties that are available on window objects and container objects (controls
of type panel and group).

alignChildren

children

layout

margins

String

Array of Object

LayoutManager

Margins

Tells the layout manager how unlike-sized children of a
container should be aligned within a column or row. Order
of creation determines which children are at the top of a
column or the left of a row; the earlier a child is created, the
closer it is to the top or left of its column or row.

If defined, a1ignment for a child element overrides the
alignChildren setting for the parent container.

Allowed values depend on the orientation value. For
orientation=row:

top

bottom

center (default)
fill

For orientation=column:
left
right

center (default)
fill
For orientation=stack:
top
bottom
left
right
center (default)
fill
Values are not case sensitive.

The collection of Ul elements that have been added to this
container (window, panel, group). An array indexed by
number or by a string containing an element's name. The
length property of this array is the number of child
elements for container elements, and is zero for controls.
Read only.

A LayoutManager Object for a container (window, panel,
group). The first time a container object is made visible,
ScriptUl invokes this layout manager by calling its 1ayout
function. Default is an instance of the LayoutManager class
that is automatically created when the container element is
created.

A Margins object describing the number of pixels between
the edges of this container and the outermost child
elements. You can specify different margins for each edge of
the container. The default value is based on the type of
container, and is chosen to match the standard Adobe Ul
guidelines.

Adobe Creative Suite 2
Bridge JavaScript Reference ScriptUl Object Reference 151

orientation String How elements are organized within this container.
Interpreted by the layout manager for the container. The
default LayoutManager Object accepts the
(case-insensitive) values:

row
column
stack

The default orientation depends on the type of container.
For window and panel, the default is column, and for Group
the default is row.

The allowed values for the container’s alignchildrenand its
children’s alignment properties depend on the orientation.

spacing Number The number of pixels separating one child element from its
adjacent sibling element. Because each container holds
only a single row or column of children, only a single
spacing value is needed for a container. The default value is
based on the type of container, and is chosen to match
standard Adobe Ul guidelines.

These functions are defined for window objects.

add Creates and returns a new control or container object and adds it to
(type [, bounds, text, the children of this window. Returns nul1 if unable to create the
{ creation props> } 1); object.
type The control type. See Control types and creation parameters.
bounds Optional. A bounds specification that describes the size and position of the

new control or container, relative to its parent. See Bounds object for
specification formats.

If supplied, this value creates a new Bounds object which is assigned to the new
object’s bounds property.

text Optional. String. Initial text to be displayed in the control as the title, label, or
contents, depending on the control type. If supplied, this value is assigned to
the new object’s text property.

creation props Optional. Object. The properties of this object specify creation parameters,
which are specific to each object type. See Control types and creation
parameters.
center Centers this window on the screen, or with respect to another
windowOb7j.center ([window]) specified window.
window Optional. A Window Object.
close Closes this window. If an onClose callback is defined for the
windowOb7j.close ([result]) window, calls that function before closing the window.
result Optional. A number to be returned from the show method that invoked this

window as a modal dialog.

Adobe Creative Suite 2

Bridge JavaScript Reference ScriptUl Object Reference 152
hide Hides this window. When a window is hidden, its children are also hidden, but
windowOb7 .hide () when it is shown again, the children retain their own visibility states.

For a modal dialog, closes the dialog and sets its result to 0.

notify Sends a notification message, simulating the specified user
windowObj.notify ([event]) interaction event. For example, to simulate a dialog being moved
by a user:

myDlg.notify ("onMove")

event Optional. The name of the window event handler to call. One of:

onClose
onMove
onMoving
onResize
onResizing
onShow

remove Removes the specified child control from this window’s children

windowOb7 . remove (index) array. No error results if the child does not exist. Returns undefined.
windowObj .remove (text)
windowObj .remove (child)

index The child control to remove, specified by 0-based index, text value, or as a
text control object.
child

show Shows this window, container, or control. If an onShow callback is defined for a
windowOb7 . show () window, calls that function before showing the window.

When a window or container is hidden, its children are also hidden, but when it
is shown again, the children retain their own visibility states.

For a modal dialog, opens the dialog and does not return until the dialog is
dismissed. If it is dismissed via the close method, this method returns any
result value passed to that method. Otherwise, returns 0.

The following callback functions can be defined to respond to events in windows. To respond to an event,
define a function with the corresponding name in the window object.

Callback Description

onClose Called when a request is made to close the window, either by an explicit call to the close
function or by a user action (clicking the OS-specific close icon in the title bar).

The function is called before the window actually closes; it can return false to cancel the
close operation.

onMove Called when the window has been moved.

onMoving Called while a window in being moved, each time the position changes. A handler can
monitor the move operation.

onResize Called when the window has been resized.

Adobe Creative Suite 2
Bridge JavaScript Reference ScriptUl Object Reference 153

Callback Description

onResizing Called while a window is being resized, each time the height or width changes. A handler
can monitor the resize operation.

onShow Called when a request is made to open the window using the show method, before the
window is made visible, but after automatic layout is complete. A handler can modify the
results of the automatic layout.

Adobe Creative Suite 2
Bridge JavaScript Reference ScriptUl Object Reference 154

Use the add method to create new containers and controls. The add method is available on window and
container (panel and group) objects. (See also add for dropdownlist and listbox controls.)

add Creates and returns a new control or container object and adds it to
(type [, bounds, text, the children of this window or container. Returns nul1l if unable to
{ creation props> } 1); create the object.
type The control type. See Control types and creation parameters.
bounds Optional. A bounds specification that describes the size and position of the new
control or container, relative to its parent. See Bounds object for specification
formats.

If supplied, this value creates a new Bounds object which is assigned to the new
object’s bounds property.

text Optional. String. Initial text to be displayed in the control as the title, label, or
contents, depending on the control type. If supplied, this value is assigned to the
new object’s text property.

creation props Optional. Object. The properties of this object specify creation parameters, which
are specific to each object type. See Control types and creation parameters.

The following type names can be used in string literals as the type specifier for the add method, available
on window and container (panel and group) objects. The class names can used in resource specifications
to define controls within a window or panel.

Type name Class name Description

button Button A pushbutton containing a text string. Calls the onClick callback if the
control is clicked or if its notify method is called.

To add to a window w:

w.add (“button” [, bounds, text 1);
bounds: Optional. The control’s position and size.

text: Optional. The text displayed in the control.

checkbox Checkbox A dual-state control showing a box with a checkmark when
value=true, empty when value=false. Calls the onClick callback if the
control is clicked or if its notify method is called.

To add to a window w:

w.add (“checkbox” [, bounds, text 1);
bounds: Optional. The control’s position and size.

text: Optional. The text displayed in the control.

Adobe Creative Suite 2
Bridge JavaScript Reference ScriptUl Object Reference 155

Type name Class name Description

dropdownlist DropDownList | A drop-down list with zero or more items. Calls the onChange
callback if the item selection is changed or if its notify method is
called.

To add to a window w:

w.add ("dropdown list", bounds [, items]
[, {creation properties}]);
bounds: The control’s position and size.

items: Optional. Supply this argument or the
creation propertiesargument, not both. An array of strings
for the text of each list item. An itemobject is created for each
item. An item with the text string "-" creates a separator item.

creation_properties. Optional. Supply this argument or the
items argument, not both. This form is most useful for
elements defined using Resource Specifications. An object that
contains the following property:

items: An array of strings for the text of each list item. An item

object is created for each item. An item with the text string "~
creates a separator item.

edittext EditText An edit text field that the user can change. Calls the onChange
callback if the text is changed and the user types ENTER or the control
loses focus, or if its notify method is called. Calls the onChanging
callback when any change is made to the text. The textselection
property contains currently selected text.

To add to a window w:

w.add (“edittext” [, bounds, text, {creation properties}]);
bounds: Optional. The control’s position and size.
text: Optional. The text displayed in the control.
creation_properties:Optional. An object that contains any of the
following properties:
multiline: When false (the default), the control accepts a single
line of text. When true, the control accepts multiple lines, in
which case the text wraps within the width of the control.
readonly: When false (the default), the control accepts text
input. When true, the control does not accept input but only
displays the contents of the text property.
noecho: When false (the default), the control displays input text.
When true, the control does not display input text (used for
password input fields).
enterKeySignalsoOnChange: When false (the default), the control
signals an onChange event when the editable text is changed
and the control loses the keyboard focus (that is, the user tabs
to another control, clicks outside the control, or types ENTER).
When true, the control only signals an onchange event when
the editable text is changed and the user types ENTER; other
changes to the keyboard focus do not signal the event.

Bridge JavaScript Reference

Adobe Creative Suite 2
ScriptUl Object Reference 156

Type name Class name Description
group Group A container for other controls. Containers have additional properties
that control the children; see Container properties. Hiding a group
hides all its children. Making it visible makes visible those children
that are not individually hidden.
To add to a window w:
w.add (“group” [, boundsl]);
bounds: Optional. The element’s position and size.
iconbutton IconButton A pushbutton containing an icon. Calls the onClick callback if the
control is clicked or if its notify method is called.
To add to a window w:
w.add (“iconbutton” [, bounds, icon,
{creation_properties}]);
bounds: Optional. The control’s position and size.
icon: Optional. The named resource for the icon or family of icons
displayed in the button control, or a pathname or File Object
for an image file. Images must be in PNG format.
creation_properties:Optional. An object that contains the
following property:
style: A string for the visual style, one of:
button: Has a visible border with a raised or 3D appearance.
toolbutton: Has a flat appearance, appropriate for inclusion in
a toolbar
image Image Displays an icon or image.
To add to a window w:
w.add (“image” [, bounds, icon]) ;
bounds: Optional. The control’s position and size.
icon: Optional. The named resource for the icon or family of icons
displayed in the image control, or a pathname or File Object for
an image file. Images must be in PNG format.
item ListItem A choice item in a list box or drop-down list. The objects are created

when items are specified on creation of the parent list object, or
afterward using the list control’s add method.

e Itemsin a drop-down list can be of type separator, in which case
they cannot be selected, and are shown as a horizontal line.

Item objects have these properties which are not found in other
controls:

index
selected

Adobe Creative Suite 2

Bridge JavaScript Reference ScriptUl Object Reference 157

Type name Class name Description

listbox ListBox A list box with zero or more items. Calls the onChange callback if the
item selection is changed or if its notify method is called.

To add to a window w:

w.add ("listbox", bounds [, items, {creation properties}]);
bounds: Optional. The control’s position and size.
items: Optional. An array of strings for the text of each list item. An
itemobject is created for each item. Supply this argument, or
the items property in creation properties, not both.
creation_properties:Optional. An object that contains any of the
following properties:
multiselect: When false (the default), only one item can be
selected. When true, multiple items can be selected.
items: An array of strings for the text of each list item. An item
object is created for each item. An item with the text string "-"
creates a separator item. Supply this property, or the items
argument, not both. This form is most useful for elements
defined using Resource Specifications.

panel Panel A container for other types of controls, with an optional frame.
Containers have additional properties that control the children; see
Container properties. Hiding a panel hides all its children. Making it
visible makes visible those children that are not individually hidden.

To add to a window w:
w.add (“panel” [, bounds, text, {creation_properties} 1);

bounds: Optional. The element’s position and size. A panel whose
width is 0 appears as a vertical line. A panel whose height is 0
appears as a horizontal line.

text: Optional. The text displayed in the border of the panel.

creation_properties:Optional. An object that contains the
following property:

borderstyle: A string that specifies the appearance of the border

drawn around the panel. One of black, etched, gray, raised,
sunken. Default is etched.

progressbar | Progressbar A horizontal rectangle that shows progress of an operation. All
progressbar controls have a horizontal orientation. The value
property contains the current position of the progress indicator; the
default is 0. There is a minvalue property, but it is always 0; attempts
to set it to a different value are silently ignored.

To add to a window w:
w.add (“progressbar” [, bounds, value, maxvalue]);
bounds: Optional. The control’s position and size.
value: Optional. The initial position of the progress indicator.
Default is 0.
maxvalue:Optional. The maximum value that the value property
can be set to. Default is 100.

Bridge JavaScript Reference

Adobe Creative Suite 2
ScriptUl Object Reference 158

Type name Class name Description
radiobutton |RadioButton | A dual-state control, grouped with other radiobuttons, of which only
one can be in the selected state. Shows the selected state when
value=true, empty when value=false. Calls the onClick callback if the
control is clicked or if its notify method is called.
All radiobuttons in a group must be created sequentially, with no
intervening creation of other element types. Only one radiobuttonin
a group can be set at a time; setting a different radiobutton unsets
the original one.
To add to a window w:
w.add (“radiobutton” [, bounds, text]);
bounds: Optional. The control’s position and size.
text: Optional. The text displayed in the control.
scrollbar Scrollbar A scrollbar with a draggable scroll indicator and stepper buttons to

move the indicator. The scrollbar control has a horizontal
orientation if the width is greater than the neight at creation time, or
vertical if its height is greater than its width.

Calls the onChange callback after the position of the indicator is
changed or if its notify method is called. Calls the onChanging
callback repeatedly while the user is moving the indicator.

The value property contains the current position of the scrollbar’s
indicator within the scrolling area, within the range of minvalue and
maxvalue.

The stepdelta property determines the scrolling unit for the up or
down arrow; default is 1.

The jumpdelta property determines the scrolling unit for a jump (as
when the bar is clicked outside the indicator or arrows); default is 20%
of the range between minvalue and maxvalue.

To add to a window w:

w.add (“scrollbar” [, bounds, value, minvalue, maxvaluel);

bounds: Optional. The control’s position and size.

value: Optional. The initial position of the scroll indicator. Default
is 0.

minvalue:Optional. The minimum value that the value property
can be set to. Default is 0. Together with maxvalue, defines the
scrolling range.

maxvalue:Optional. The maximum value that the value property
can be set to. Default is 100. Together with minvalue, defines
the scrolling range.

Bridge JavaScript Reference

Adobe Creative Suite 2
ScriptUl Object Reference 159

Type name

Class name Description

slider

statictext

Slider A slider with a moveable position indicator. All s1ider controls have a
horizontal orientation. Calls the onChange callback after the position
of the indicator is changed or if its notify method is called. Calls the
onChanging callback repeatedly while the user is moving the
indicator.

The value property contains the current position of the indicator
within the range of minvalue and maxvalue.

To add to a window w:

w.add (“slider” [, bounds, value, minvalue, maxvalue]);

bounds: Optional. The control’s position and size.

value: Optional. The initial position of the indicator. Default is 0.

minvalue:Optional. The minimum value that the value property
can be set to. Default is 0. Together with maxvalue, defines the
range.

maxvalue:Optional. The maximum value that the value property
can be set to. Default is 100. Together with minvalue, defines
the range.

StaticText A text field that the user cannot change.

To add to a window w:

w.add (“statictext” [, bounds, text,
{creation_properties}]);

bounds: Optional. The control’s position and size.
text: Optional. The text displayed in the control.
creation_properties:Optional. An object that contains any of the
following properties:
multiline: When false (the default), the control displays a single
line of text. When true, the control displays multiple lines, in
which case the text wraps within the width of the control.
scrolling: When false (the default), the displayed text cannot
be scrolled. When true, the displayed text can be vertically
scrolled using the Up ARROW and DOWN ARROW; this case implies

multiline=true.

Adobe Creative Suite 2
Bridge JavaScript Reference ScriptUl Object Reference 160

The following table shows the properties of all ScriptUl elements. Some values apply only to controls of
particular types, as indicated.

active Boolean When true, the object is active, false otherwise. Set to true to
make a given control or dialog active.

e A modal dialog that is visible is by definition the active
dialog.

e An active palette is the front-most window.

e An active control is the one with focus—that is, the one that
accepts keystrokes, or in the case of a Button, be selected
when the user types a Return.

alignment String Applies to child elements of a container. If defined, this value
overrides the alignChildren setting for the parent container.
Allowed values depend on the orientation value of the parent
container. For orientation=row:
top
bottom

center (default)
fill

For orientation=column:
left
right
center (default)
fill

For orientation=stack:
top
bottom
left
right
center (default)
fill

Values are not case sensitive.

bounds Bounds A Bounds object describing the boundaries of the element, in
screen coordinates for window elements, and parent-relative
coordinates for child elements. For windows, the bounds refer
only to the window's content region.

Setting an element's size or location changes its bounds
property, and vice-versa.

enabled Boolean When true, the control is enabled, meaning that it accepts input.
When false, control elements do not accept input, and all types
of elements have a grayed-out appearance.

helpTip String A brief help message (also called a tool tip) that is displayed in a
small floating window when the mouse cursor hovers over a Ul
control element. Set to an empty string or null to remove help
text.

Bridge JavaScript Reference

Adobe Creative Suite 2

ScriptUl Object Reference 161

icon

index

items

itemSize

jumpdelta

justify

location

maxvalue

String or File

Number

Array of Object

Dimension

Number

String

Point

Number

The name of an icon resource or the pathname or File Object for
a file that contains a platform-specific icon image in PNG format.

e Foran 1conButton, the icon appears as the content of the
button.

e ForarListItem theicon is displayed to the left of the text.

e Foran 1mage, the icon is the entire content of the image
element.

For ListTtem objects only. The index of this item in the items
collection of its parent list control. Read only.

For a list object (1istbox or dropdown list), a collection of
ListItemobjects for the items in the list. Access by 0-based
index. To obtain the number of items in the list, use
items.length. Read only.

For a list object (1istbox or dropdown list), a Dimension object
describing the width and height in pixels of each item in the list.
Used by auto-layout to determine the preferredsize of the list,
if not otherwise specified.

If not set explicitly, the size of each item is set to match the
largest height and width among all items in the list

The amount to increment or decrement a scrollbar indicator's
position when the user clicks ahead or behind the moveable
element. Default is 20% of the range between the maxvalue and
minvalue property values.

The justification of text in static text and edit text controls. One
of:
left (default)
center
right
Note: Justification only works if the value is set before the
window containing the control is displayed for the first
time.

A Point object describing the location of the element as an
array, [x, yl, representing the coordinates of the upper left
corner of the element. These are screen coordinates for window
elements, and parent-relative coordinates for other elements.

The locationis defined as [bounds.x, bounds.y].Setting an
element's 1location changes its bounds property, and vice-versa.
By default, 1ocation is undefined.

The maximum value that the value property can have.

If maxvalue is reset less than value, value is reset to maxvalue. If
maxvalue is reset less than minvalue, minvalue is reset to
maxvalue.

Bridge JavaScript Reference

Adobe Creative Suite 2

ScriptUl Object Reference 162

minvalue

parent

preferredSize

properties

selected

selection

size

stepdelta

Number

Object

Dimension

Object

Boolean

Listitem, Array of
Listltem

Dimension

Number

The minimum value that the value property can have.

If minvalue is reset greater than value, value is reset to minvalue.
If minvalue is reset greater than maxvalue, maxvalue is reset to

minvalue.

The parent object of a Ul object, a window, panel or group, Of null
for window objects. Read only.

A Dimension object used by layout managers to determine the
best size for each element. If not explicitly set by a script, value is
established by the Ul framework in which ScriptUl is employed,
and is based on such attributes of the element as its text, font,
font size, icon size, and other Ul framework-specific attributes.

A script can explicitly set preferredsize before the layout
manager is invoked in order to establish an element size other
than the default.

An object that contains one or more creation properties of the
element (properties used only when the element is created).

For ListTtem objects only. When true, the item is part of the
selection forits parent list. When false, the item is not selected.
Set to true to select this item in a single-selection list, or to add it
to the to the selection array for a multi-selection list.

For a list object (1istbox or dropdown list), the currently selected
ListItemobject for a single-selection list, or an array of ListItem
objects for current selection in a multi-selection list. Setting this
value causes the selected item to be highlighted and to be
scrolled into view if necessary.

You can set the value using the index of an item or an array of
indices, rather than object references. If set to an index value
that is out of range, the operation is ignored. When set with
index values, the property still returns object references.

e If you set the value to an array for a single-selection list, only
the firstitem in the array is selected.

e If you set the value to a single item for a multi-selection list,
that item is added to the current selection.

If no items are selected, the value is null. Set to null to deselect
all items.

A Dimension object that defines the actual dimensions of an
element. Initially undefined, and unless explicitly set by a script,
it is defined by a LayoutManager. A script can explicitly set size
before the layout manager is invoked to establish an element
size other than the preferredsize or the default size.

Defined as [bounds.width, bounds.height]. Setting an
element's size changes its bounds property, and vice-versa.

The amount by which to increment or decrement a Scrollbar
element's position when the user clicks a stepper button.

Adobe Creative Suite 2
Bridge JavaScript Reference ScriptUl Object Reference 163

text String The title, label, or displayed text. Ignored for certain window
types. For controls, the meaning depends on the control type.
Buttons use the text as a label, for example, while edit fields use
the text to access the content.

This is a localizable string: see Localization in ScriptUl Objects

textselection | String The currently selected text in a control that displays text, or the
empty string if there is no text selected.

Setting the value replaces the current text selection and
modifies the value of the text property. If there is no current
selection, inserts the new value into the text string at the
current insertion point. The textselection value is reset to an
empty string after it modifies the text value.

Note: Setting the textselection property before the edittext
control’s parent window exists is an undefined operation.
type String Contains the type name of the element, as specified on creation.

e Forwindowobjects, one of the type names window, palette, Or
dialog.

e For controls, the type of the control, as specified in the add
method that created it.

Read only.

value Boolean For a checkbox or radiobutton, true if the control is in the
selected or set state, falseifitis not.

value Number For a scrollbar or slider, the current position of the indicator. If set
to a value outside the range specified by minvalue and maxvalue,
it is automatically reset to the closest boundary.

visible Boolean When true, the element is shown, when false it is hidden.

When a container is hidden, its children are also hidden, but they
retain their own visibility values, and are shown or hidden
accordingly when the parent is next shown.

Adobe Creative Suite 2
Bridge JavaScript Reference ScriptUl Object Reference 164

The following table shows the methods defined for each element type, and for specific control types as

indicated.
add For list objects (1istbox or dropdown list) only. Adds an item to the
1istObj.add items array at the given index. Returns the item control object for
(type, text[, index]) type=item O null for type=separator.
type The type of item to add. One of:
item: A basic, selectable item with a text label.
separator: A separator. For dropdownlist controls only. In this case, the text
value is ignored, and the method returns nu11l.
text The localizable text label for the item.
index Optional. The index into the current item list after which this item is inserted. If not
supplied, or greater than the current list length, the new item is added at the end.
find For list objects (1istbox or dropdown list) only. Looks in this object’s
1istObj.find (text) items array for an itemobject with the given text value. Returns the
itemobject if found; otherwise, returns nui1l.
text The text of the item to find.
hide Hides this container or control. When a window or container is
controlObj.hide() hidden, its children are also hidden, but when it is shown again, the
children retain their own visibility states.
notify Sends a notification message, simulating the specified user
controlObj.notify ([event]) interaction event.
event Optional. The name of the control event handler to call. One of:
onClick
onChange
onChanging
By default, simulates the onChange event for an edittext control, an onClick event
for controls that support that event.
remove For containers (panel, group), removes the specified child control
containerObj.remove (1index) from the container’s children array.

containerObj.remove (text)

containerob; . remove (child) For list objects (1istbox or dropdown list) only, removes the specified

item from this object’s items array. No error results if the item does

not exist.

index The item or child to remove, specified by 0-based index, text value, or as a control

text object.

child
removeAll For list objects (1istbox or dropdown list) only. Removes all items from
1istObj.removeall () the object’s items array.
show Shows this container or control. When a window or container is
controlobj.show () hidden, its children are also hidden, but when it is shown again, the

children retain their own visibility states.

Adobe Creative Suite 2

Bridge JavaScript Reference ScriptUl Object Reference 165
toString For item controls only. Returns the value of this item’s text property
listItemObj.toString() as a string.
valueOf For item controls only. Returns the index number of this item in the
1istItemOb7.valueOf () parent list’s items array.

The following events are signalled in certain types of controls. To handle the event, define a function with
the corresponding name in the control object.

onClick Called when the user clicks one of the following control types:

button
checkbox
iconbutton
radiobutton

onChange Called when the user finishes making a change in one of the following control types:

dropdownlist

edittext

listbox

scrollbar

slider

e Foran edittext control, called only when the change is complete—that is, when

focus moves to another control, or the user types ENTER. The exact behavior depends
on the creation parameter enterkeySignalsOnChange; see the edittext description.

e Fora slider or scrollbar, called when the user has finished dragging the position
marker or has clicked the control.
onChanging Called for each incremental change in one of the following control types:

edittext
scrollbar
slider

e For an edittext control, called for each keypress while the control has focus.

e Foraslider or scrollbar, called for any motion of the position marker.

Adobe Creative Suite 2
Bridge JavaScript Reference ScriptUl Object Reference 166

ScriptUl defines objects to represent the complex values of properties that place and size windows and Ul
elements. These objects cannot be created directly, but are created when you set the corresponding
property. That property then returns that object. For example, the bounds property returns a Bounds object.

You can set these properties as objects, strings, or arrays.

e c.prop = Object: The object must contain the set of properties defined for this type, as shown in the
table below. The properties have integer values.

e ec.prop = String: The string must be an executable JavaScript inline object declaration, conforming to
the same object description.

e c.prop = Array: The array must have integer coordinate values in the order defined for this type, as
shown in the table below. For example:

The following examples show equivalent ways of placing a 380 by 390 pixel window near the upper left
corner of the screen:

var dlg = new Window('dialog', 'Alert Box Builder') ;

dlg.bounds = {x:100, y:100, width:380, height:390}; //object
dlg.bounds = {left:100, top:100, right:480, bottom:490}; //object
dlg.bounds = "x:100, y:100, width:380, height:390"; //string
dlg.bounds = "left:100, top:100, right:480, bottom:490"; //string
dlg.bounds = [100,100,480,490]; //array

You can access the resulting object as an array with values in the order defined for the type, or as an object
with the properties supported for the type.

The following table shows the property-value object types, the element properties that create and contain
them, and their array and object-property formats.

Bounds Defines the boundaries of a window within the screen’s coordinate space, or of a Ul
element within the container’s coordinate space. Contains an array, [left, top,
right, bottom], that defines the coordinates of the upper left and lower right
corners of the element.

A Bounds object is created when you set an element’s bounds property, and this
property returns a Bounds object.

e An object must contain properties named left, top, right, bottom, OF %, y,
width, height.

e An array must have values in the order [left, top, right, bottom].

Dimension Defines the size of a window or Ul element. Contains an array, [width, height], that
defines the element’s size in pixels.

A Dimension object is created when you set an element’s size or preferredsize
property.
e An object must contain properties named width and height.

e An array must have values in the order [width, height].

Bridge JavaScript Reference

Adobe Creative Suite 2
ScriptUl Object Reference 167

Margins

Point

Defines the number of pixels between the edges of a container and its outermost
child elements. Contains an array [left, top, right, bottom] whose elements
define the margins between the left edge of a container and its leftmost child
element, and so on.

A Margins object is created when you set an element’s margins property.
e An object must contain properties named 1left, top, right, and bottom.
e An array must have values in the order [left, top, right, bottom].

You can also set the margins property to a number; all of the array values are then
set to this number.

Defines the location of a window or Ul element. Contains an array, [x, y1, whose
values represent the origin point of the element as horizontal and vertical pixel
offsets from the origin of the element’s coordinate space.

A point object is created when you set an element’s location property.
e An object must contain properties named xand y.

e An array must have values in the order [x, vyI.

Adobe Creative Suite 2
Bridge JavaScript Reference ScriptUl Object Reference 168

Controls the automatic layout behavior for a window or container. The subclass AutoLayoutManager
implements the default automatic layout behavior.

Create an instance of the AutoLayoutManager class with the new operator:
myWin.layout = new AutoLayoutManager (myWin) ;
An instance is automatically created when you create a window or container (group or panel) object,

and referenced by the container’s layout property. This instance implements the default layout behavior
unless you override it.

The default object has no predefined properties, but a script can assign arbitrary properties to an object it
creates, to store data needed by the script-defined layout algorithm.

layout Invokes the automatic layout behavior for the managed container. Adjusts
win.layout.layout sizes and positions of the child elements of this window or container
(recalculate) according to the placement and alignment property values in the parentand
children.

Invoked automatically the first time the window is displayed. Thereafter, the
script must invoke it explicitly to change the layout in case of changes in the
size or position of the parent or children.

recalculate Optional. When true, forces the layout manager to recalculate the container size for this
and any child containers. Default is false.

Adobe Creative Suite 2
Bridge JavaScript Reference ScriptUl Object Reference 169

The MenuElement class is used to represent application menu bars, their menus and submenus, and
individual items or commands. Each application creates menuElement instances for each of the existing
menu elements, and you can create additional instances to extend the existing menus.

Each menuElement object has unique identifier. Existing menu elements that can be extended have
predefined identifiers, listed in Bridge menu and command identifiers. Not all existing menu elements can
be extended. You can only add a new menu or command before or after an existing menu or command,
which you must specify using the predefined unique identifier.

The menu, submenu, and command identifier names do not necessarily match the display names. Menu
identifiers are case sensitive. They are not displayed and are never localized. When a script creates a new
menu or command, you should assign a descriptive unique identifier. If you do not, one is generated using
a numeric value.

The display text of a new menu element can be localized by specifying it with the Global localize function.
See Localizing ExtendScript Strings.

Menu separators are not independent elements, but can be inserted before or after an element that you
add to a menu. The separator is specified as part of the location string on creation; see Creating new menu
elements below.

The MenuElement class defines these static functions that you can use to extend and work with existing
menu elements.

create Adds a new menu to a menu bar, a new submenu to an existing menu, or
MenuElement.create (type, @ anew command to an existing menu or submenu. Returns the new
text, location[, id]); menuElement object.See examples below.
type The type of menu element, one of:

menu: @ menu or submenu
command: @ menu item

text The localizable string that is displayed as the label text. Script-created menu and menu
commands cannot have keyboard shortcuts or icons.

Adobe Creative Suite 2
Bridge JavaScript Reference ScriptUl Object Reference 170

location A string describing the location of the new menu element, with respect to existing menu
elements. This can take one of the following forms:

before identifier: Create the new element before the given menu element.

after identifier:Create the new element before the given menu element.

at the end of identifier: Append the new element to the given menu. The
identifier must be for a menu, not a command item.

at the beginning of identifier: Create the new element as the first item in the
given menu. The identifier must be for a menu, not a command item.

To insert a separator before or after the new element, specify a dash (-) at the beginning
or end of the location string.

For example, this value draws separators before and after the new element, which is
added after the Find submenu in the Edit menu:

-after /bridge/edit/find-

A string that does not conform to these rules causes a run-time error.

id The unique identifier for this element. Optional.

o If the ID of an existing menu or submenu is supplied, the call returns that menu or
submenu object.

o If the ID of an existing menu command is supplied, the call causes a JavaScript
error.

e If not supplied, the call generates a numeric value, which can be found in the ia
property of the returned menu object.

find Finds and returns the menurlement object for the specified menu or menu
MenuElement . find (id) item, or nu11 if no such element is found.
id String. The unique identifier for the menu element to find.
» Example

This example checks to see whether a specific menu item already exists to avoid an error if the script is
executed a second time.

var menu = MenuElement.find ('myMenuId');
if (menu = null) //element does not yet exist
// add menu element

remove Removes a script-defined menu or menu item. Returns undefined.
MenuElement .remove (id)

id String. The unique identifier for the menu element to remove.

These examples illustrate the creation of new menus and menu items.

» Example: Adding a menu and command to the menu bar

This example adds a new menu to the menu bar, after the Help menu. It adds one command to that menu,
labeled "Alert", and assigns it an onSelect callback that displays an alert dialog when the item is clicked.

newMenu = new MenuElement ("menu", "MyMenu", "after Help", "myMenu");
alertCommand = new MenuElement ("command", "Alert", "at the end of myMenu",
"myAlert") ;

Adobe Creative Suite 2
Bridge JavaScript Reference ScriptUl Object Reference 171

alertCommand.onSelect = function () { Window.alert ("Hi."); }

» Example: Adding a command to a context menu

This example adds a "Count Children" command to the context menu for folder thumbnails, and assigns it
an onSelect callback that counts and displays the number of child nodes in that folder.

The onSelect callback assumes that the thumbnail is for a folder, so the example makes sure it cannot be
called for a thumbnail that does not represent a folder. To do this, the onDisplay callback of the new
element (called each time the menu is displayed) enables the command only when the currently selected
thumbnail is for a folder.

If multiple thumbnails are selected when the user invokes the context menu, the new command is
enabled if the first one is a folder. In this case, selecting the command reports the number of items in that

folder.
var cntCommand = new MenuElement ("command", "Count Children",
"at the end of Thumbnail", "myCount") ;
cntCommand.onSelect = function(m) {
try {

// get the thumbnail associated with the context menu
var tn = app.document.selections[0];
// display the number of direct descendants

Window.alert ("Number of direct descendants: " + tn.children.length) ;
} catch(error) { Window.alert (error); }
}i
cntCommand.onDisplay = function (m) {
try {
var tn = app.document.selections[0];//check the first selected node
if (tn.container) //is it for a folder?
m.enabled = true; // yes, enable the command
else
m.enabled = false; // no, disable the command
} catch(error) { Window.alert (error); }
}i
altDown Boolean When true, the ALT modifier key was pressed when the item was selected.
Read only.
checked Boolean When true, the command is selected. A check mark appears next to the
label. When false, the item is not selected, and no check mark is shown.
Read/write.
cmdDovwn Boolean When true, the COMMAND modifier key was pressed when the item was
selected. Read only.
ctrlDown Boolean When true, the CONTROL modifier key was pressed when the item was
selected. Read only.
enabled Boolean When true, the menu or command is selectable. When false, it is grayed

out and cannot be selected. Read/write.

Bridge JavaScript Reference

Adobe Creative Suite 2
ScriptUl Object Reference 172

id

onDisplay

optionDown

onSelect

shiftDown

text

type

String

Function

Boolean

Function

Boolean

String
String

A unique identifier. Read only. Identifiers take the form:

/app/menu/ submenu/ command
They are not localized, and are case sensitive.

The callback function that is called when the application is about to
display this menu or menu item. The function takes no arguments, and
returns nothing. It can change the enabled and checked properties
according to the state of the application.

When true, the OpPTION modifier key was pressed when the item was
selected. Read only.

The callback function that is called when the user selects the menu or
menu item. The function takes no arguments, and returns nothing. It
implements the behavior of a menu item.

The callback can check this object’s properties to respond to the following
modifier keys:

if (this.ShiftDown)

// Shift key pressed
if (this.altDown)

// Alt key pressed
if (this.ctrlDown)

// Control key pressed
if (this.cmdDown)

// Command key pressed
if (this.optionDown)

// Option key pressed

When true, the SHIFT modifier key was pressed when the item was
selected. Read only.

The displayed label text, a localizable string. Read only.

The type of menu element, one of:

menu: @ Menu or submenu
command: @ menu item

Read only.

These unique identifiers are predefined for Bridge menus that can be extended.

These tables list unique identifiers for the top-level menus in Adobe Bridge

Menubar menus

Bridge (Mac OS only)

File
Edit

Menu ID
(not available)
File

Edit

Adobe Creative Suite 2

Bridge JavaScript Reference ScriptUl Object Reference 173
Tools Tools
Label Labels
View View
Window Window
Help Help
Context menus Menu ID
thumbnail context Thumbnail
Flyout menus Menu ID
Folders tab flyout FoldersTab
Keywords tab flyout KeywordsTab
Metadata tab flyout MetadataTab
Flyout menu submenus Menu ID
Metadata flyout > AppendMetadata Bridge/Submenu/AppendMetadata
Metadata flyout > ReplaceMetadata Bridge/Submenu/ReplaceMetadata

Note: The commands in flyout menus are not available to scripts.

These tables list unique identifiers for submenus and commands in the Adobe Bridge menus.

Bridge menu commands (Mac OS only)

Submenus/commands Menu ID

About Bridge mondo/ command/about
Preferences Prefs

Quit Bridge mondo/command/quit

File menu commands

Submenus/commands Menu ID

New Window mondo/command/new
New Folder NewFolder

Open Open

Open with > submenu/Openiith
Open with > [installed application] (not available)

Open in Camera Raw OpenInCameraRaw

Adobe Creative Suite 2

Bridge JavaScript Reference ScriptUl Object Reference 174
Eject Eject
Close Window mondo/command/close
Send to Recycle Bin MoveToTrash
Return to ReturnToApplication
Reveal in Explorer/Finder Reveal
Reveal in Bridge RevealInBridge
Place > submenu/Place
Add To Favorites AddToFavorites
File Info... FileInfo
Versions... Versions
Alternates... Alternates
Exit mondo/command/quit

Edit menu commands

Submenus/commands Menu ID

Undo mondo/command/undo

Cut mondo/command/cut

Copy mondo/command/copy
Paste mondo/command/paste
Duplicate Duplicate

Select All mondo/command/selectAll
Select Labeled SelectLabeled

Select Unlabeled SelectUnlabeled

Invert Selection InvertSelection
Deselect All mondo/command/selectNone
Find... Search

Camera Raw Settings... submenu/CameraRaw

Apply Camera Raw Settings > ApplyCameraRaw

Apply Camera Raw Settings > Camera Default CRDefault

Apply Camera Raw Settings > Previous Conversion CRPrevious

Apply Camera Raw Settings > Copy Camera Raw Settings | CRCopy

Apply Camera Raw Settings > Paste Camera Raw Settings CRPaste

Adobe Creative Suite 2
Bridge JavaScript Reference

ScriptUl Object Reference

175

Apply Camera Raw Settings > Clear Settings CRClear
Rotate 180° Rotatel80
Rotate 90° Clockwise Rotate90CwW
Rotate 90° Counterclockwise Rotate90CCW
Creative Suite Color Settings... SharedSettings
Camera Raw Preferences... CRPreferences
Preferences... Prefs

Tools menu commands
Submenus/commands Menu ID
Batch Rename... BatchRename

Version Cue >

Version Cue > Synchronize

Version Cue > Mark In Use

Version Cue > Save a Version
Version Cue > Revert to Last Version
Version Cue > Make Alternates
Version Cue > New Project

Version Cue > Connect to...

Version Cue > Edit Properties...
Cache >

Cache > Build Cache for Subfolders
Cache > Purge Cache for This Folder
Cache > Purge Entire Cache

Cache > Export Cache

Append Metadata >

[templates]

Replace Metadata >

[templates]

submenu/VersionCue
Synchronize

CheckOut

(not available)

RevertToProject
CreateAlternateGroup
NewProject

ConnectTo

EditProperties

submenu/Cache

BuildSubCaches

PurgeCache

PurgeAllCaches

ExportCache
Bridge/Submenu/AppendMetadata
(not available)
Bridge/Submenu/ReplaceMetadata

(not available)

Label menu commands

Submenus/commands

Rating

Menu ID

(not available)

Bridge JavaScript Reference

Adobe Creative Suite 2

ScriptUl Object Reference

176

No Rating

NoDot

*

OneDot

*%

TwoDots

*X%

ThreeDots

XXX

FourDots

FRXXX

FiveDots

Decrease Rating

RemoveDot

Increase Rating

AddDot

Label (not available)
No Label NoLabel
Red Red
Yellow Yellow
Green Green
Blue Blue
Purple Purple

View menu commands
Submenus/commands Menu ID
Compact Mode ToggleCompactMode
Slide Show... SlideShow
As Thumbnails View/Thumbnail
As Details View/Details
As Versions Alternates View/Versions
As Filmstrip View/Filmstrip
Favorites Panel FavoritesTab
Folders Panel FoldersTab
Preview Panel PreviewTab
Metadata Panel MetadataTab
Keywords Panel KeywordsTab
Sort > submenu/Sort
Sort > Ascending Order Ascending
Sort > By File Name SortFileName

Bridge JavaScript Reference

Adobe Creative Suite 2

ScriptUl Object Reference 177

Sort > By Document Kind
Sort > By Date Created

Sort > By Date File Modified
Sort > By File Size

Sort > By Dimensions

Sort > By Resolution

Sort > By Color Profile

Sort > By Copyright

Sort > By Label

Sort > By Rating

Sort > By Purchase State
Sort > By Version Cue Status
Sort > Manually

Show Thumbnail Only
Show Hidden Files

Show Folders

Show All Files

Show Graphic Files Only

Show Camera Raw Files Only

SortFileType
SortDateCreated
SortDateModified
SortFileType
SortDimensions
SortResolution
SortColorbProfile
SortCopyright
SortByLabel
SortRating
SortPurchaseState
SortUseState
SortManually
ShowThumbnailOnly
ShowHidden
ShowFolders
FilterNoFiles
FilterGraphicFiles

FilterCameraRawFiles

Show Vector Files Only FilterVectorFiles
Refresh Refresh

Window menu commands
Submenus/commands Menu ID
Workspace > submenu/Workspace
Workspace > Save Workspace SaveWorkspace
Workspace > Delete Workspace DeleteWorkspace

Workspace > Reset to Default Workspace

Workspace > Lightbox
Workspace > File Navigator
Workspace > Metadata Focus

Workspace > Filmstrip Focus

(not available)
(not available)
(not available)
(not available)

(not available)

Adobe Creative Suite 2

Bridge JavaScript Reference ScriptUl Object Reference 178

Help menu commands

Submenus/command Menu ID

Bridge Help... mondo/ command/help
VersionCue Help... VersionCueHelp
Updates... Updates

About Bridge...

mondo/command/about

Context menu commands

Thumbnail context menu in Favorites tab

commands Menu ID
Remove From Favorites Bridge/ContextMenu/Keyword/Delete
Thumbnail context menu in Folders tab commands Menu ID

Send to Recycle Bin Bridge/ContextMenu/Folders/Delete

Reveal in Explorer/Finder Bridge/ContextMenu/Folders/Reveal

Add to Favorites

Thumbnail context menu in Content pane (folders)
submenus/commands

Open

Open with >

Reveal in Explorer/Finder
Add to Favorites

Send to Recycle Bin
Label >

Label > No Label

Label > label strings

Thumbnail context menu in Content pane (files)
submenus/commands

Open

Open With >

Reveal in Explorer/Finder
Send to Recycle Bin

File Info...

Label >

Label > No Label

Bridge/ContextMenu/Folders/AddToFavorites

Menu ID

Thumbnail/Open
submenu/OpenWith
Thumbnail /RevealLocation
Thumbnail/AddToFavorites
Thumbnail/Remove
submenu/Label

(not available)

(not available)

Menu ID

Thumbnail/Open

subment /OpenWith
Thumbnail /RevealLocation
Thumbnail/Remove
Thumbnail/FileInfo
submenu/Label

(not available)

Adobe Creative Suite 2

Bridge JavaScript Reference

ScriptUl Object Reference

179

Label > label strings

Thumbnail context menu in Content pane (images)
additional commands

Rotate 180°
Rotate 90° Clockwise
Rotate 90° Counterclockwise

Thumbnail context menu in Content pane (Version
Cue nodes) additional command

Versions...

Keywords context menu commands
New Keyword

New Keyword Set

Rename

Delete

Find...

(not available)

Menu ID
Thumbnail /Rotatel80
Thumbnail /RotateCW

Thumbnail /RotateCCW

Menu ID

Thumbnail /Versions

Menu ID
Bridge/ContextMenu/Keyword/NewKey
Bridge/ContextMenu/Keyword/NewSet
Bridge/ContextMenu/Keyword/Rename
Bridge/ContextMenu/Keyword/DeleteNode

Bridge/ContextMenu/Keyword/Search

9

Interapplication Communication with Scripts

Scripts written for any Adobe Creative Suite 2 application can communicate with other Creative Suite 2
applications in three ways:

e Cross-DOM Functions

This limited set of basic functions is common across all Adobe Creative Suite 2 applications, and allows
your script to, for example, open or print files in other applications, simply by calling the open or
print function for that application. Cross-DOM API Reference provides reference details for the
functions of the Cross-DOM.

e Cross-DOM API Reference

Each Adobe Creative Suite 2 application exports a set of functions to provide a selected set of
application-specific functionality. For example, a Bridge script can request a photo merge in
photoshop by calling photoshop . photomerge (files). The set of functions available for each
application varies widely.

e Communicating Through Interapplication Messages

The interapplication message framework is an application programming interface (API) that allows
extensive control over communication between applications. The APl allows you to send messages to
other applications and receive results, and to receive messages sent by other applications and return
results. Typically the data passed between applications are JavaScript scripts. However, the messaging
framework is extensible. It allows you to define different types of data to send between applications,
and to specify how they are handled.

Interapplication Message API Reference provides complete reference details.

Any application that supports any of these techniques is said to be messaging enabled. All Adobe Creative
Suite 2 applications are messaging enabled. A set of Sample Workflow Automation Scripts is provided
with Adobe Creative Suite 2, which demonstrate how scripts can be used to create a workflow that takes
advantage of functionality in different applications.

When calling external functions or exchanging messages, you must identify particular applications using
namespace specifiers. A specifier consists of a specific name string (such as photoshop), and optional
additions that identify a particular release or locale version. Application specifiers are used occasionally in
other contexts as well. For details of the syntax, see Application and Namespace Specifiers.

Regardless of which method you use to perform interapplication communication, you must place your
script in a location where the application you want to run it can see it. There are different locations for the
startup scripts of the applications themselves, and for scripts provided by developers.

Because all Adobe Creative Suite 2 applications look in the same locations for scripts to run, the scripts
themselves must be explicit about which application they are meant for. A script should check that all
applications it needs to communicate with are installed with the correct version, and that any other
applications that might be installed do not run the script. For details, see Script Locations and Checking
Application Installation.

180

Adobe Creative Suite 2
Bridge JavaScript Reference Interapplication Communication with Scripts 181

The Cross-DOM is a small application programming interface (API), which provides a set of functions that
are common across Adobe Creative Suite 2 applications. These include functions to open files, execute
scripts, and print files. For details of the function set, see the Cross-DOM API Reference.

You can access Cross-DOM functions in any Creative Suite 2 script by prefixing the function name with the
namespace specifier for the target application (see Namespace specifiers). For example, a Photoshop CS2
script can call indesign.open (file) to open afile in InDesign CS2, orgolive.open (file) to open
afile in GolLive CS2.

The Cross-DOM functions for each application are implemented in JavaScript. You can see the
implementation for each installed application by reading its associated startup script in the Adobe startup
folder. For example, Illustrator CS2 defines i11lustrator.open () intheillustrator-n.jsx startup
script (where n is the version number of the installed application).

e In Windows, the application start-up scripts are found in:
$CommonProgramFiles%\Adobe\StartupScripts
e In Mac OS, the application start-up scripts are found in:

/Library/Application Support/Adobe/StartupScripts/

Note: This is not the location in which to store your own startup scripts; see Script Locations and Checking

Application Installation.

All exported functions, including those of the Cross-DOM API, are invoked through the exporting
application, identified by its namespace specifier (see Namespace specifiers). For example:

//execute an Illustrator script in version 12
illustratorl2.executeScript (myAIScript) ;

A specifier with no version information invokes the highest installed version of the application. For
example:
//execute a Photoshop script in the highest available version
photoshop.executeScript (myPSScript) ;

All Adobe Creative Suite 2 applications implement the following Cross-DOM functions:

executeScript Performs a JavaScript eval on the specified script. The entire
appspec. executeScript (script) document object model (DOM) of the target application is
available to the script. Returns undefined.

script A string containing the script to be evaluated.
open Performs the equivalent of the target application’s File > Open
appspec.open (files) command on the specified files. Returns undefined.

files A File Object or array of rile objects. For applications that use compound

documents, this should be a project file.

Adobe Creative Suite 2

Bridge JavaScript Reference Interapplication Communication with Scripts 182
openAsNew Performs the equivalent of the target application’s File > New
appspec. openAsNew ([options]) command. Returns true on success.

options Optional. Application-specific creation options:
Bridge: none

Photoshop: none
InDesign: creation options are:

(Boolean: showinglWindow, ObjectOrString:documentPresets)

See the arguments for documents.add () in the InDesign CS2 Scripting
Reference.

Illustrator: creation options are:
([DocumentColorSpace: colorspace] [, Number:width, Number:height])
See the arguments for documents.add () in the lllustrator CS2 JavaScript
Reference.

Golive: creation options are:
([ObjectOrString: templateFile])
See the arguments for app.newbocument () in the GoLive CS2 SDK JavaScript

Reference.
print Performs the equivalent of the target application’s File > Print
appspec.print (files) command on the specified files. Returns undefined.
files A File Object or array of rile objects. For applications that use compound
documents, this should be a project file.
quit Performs the equivalent of the target application’s File > Exit or
appspec.quit () File > Close command. Returns undefined.
reveal Gives the target application the operating-system focus, and, if
appspec.reveal (file) the specified file is open in that application, brings it to the

foreground. Returns undefined.

file AFile Object or string specifying a file that can be opened in the target application.

Each Adobe Creative Suite 2 can provide application-specific functionality to all Creative Suite 2 scripts
through a simple syntax. You can access exported functions in any Creative Suite 2 script by prefixing the
function name with the namespace specifier for the target application (see Namespace specifiers). For
example, Photoshop CS2 exports the photomerge function, so a GoLive CS2 script can directly call
photoshop.photomerge (files).

The only difference between Cross-DOM functions and the application-specific exported functions is that
all applications expose the same set of Cross-DOM functions, whereas each application exposes its own
set of application-specific functions. Each application determines the extent of its exported functionality.
Some applications provide extensive support for exported functions, others less.

Adobe Creative Suite 2
Bridge JavaScript Reference Interapplication Communication with Scripts 183

For details of additional functions that are exported by individual applications, refer to the startup scripts
for those applications. The application startup scripts are named appname-n. jsx, where n is the version
number of the installed application, and found at:

$CommonProgramFiles%\Adobe\StartupScripts (in Windows)
/Library/Application Support/Adobe/StartupScripts/ (in Mac OS)

Note: This is not the location in which to store your own startup scripts; see Script Locations and Checking
Application Installation.

Adobe Creative Suite 2
Bridge JavaScript Reference Interapplication Communication with Scripts 184

Bridge provides an application programming interface (API) that defines a communication protocol
between Adobe Creative Suite 2 applications. This provides the most general mechanism for
communication between applications. A messaging-enabled application can launch another
messaging-enabled application, and send or receive scripts to effect certain actions. For example, from
within Bridge, a script can launch Photoshop, and then send a script to Photoshop that requests a
photomerge operation.

While the exported functions allow specific access to certain capabilities of the application, the scriptin an
interapplication message allows full access to the target application's document object model (DOM), in
addition to all cross-DOM and application exported functions.

The messaging API defines the BridgeTalk Class, whose static properties and functions provide access to
environmental information relevant for communication between applications. You can instantiate this
class to create a BridgeTalk Message Object, which encapsulates a message and allows you to send it to
another application. For details of these objects, see Interapplication Message API Reference.

To send a script or other data to another application, you must create and configure a BridgeTalk Message
Object. This object contains the data to be sent (generally a script to be executed in the target
application), and also specifies how to handle the response.

This simple example walks through the steps of sending a script from Bridge to Photoshop CS2, and
receiving a response.

Step 1: Check that the target application is installed

Before you can actually send a message, you must check that the required version of the target application
is installed. The function getSpecifier, available in the global namespace through the BridgeTalk Class,
provides this information.

For example, this code, which will send a message to Bridge as part of a script being executed by
Photoshop CS2, checks that the required version of Bridge is installed:

var targetApp = BridgeTalk.getSpecifier("bridge", "1");
if (targetBpp) {

// construct and send message
}

When you send the message, the messaging framework automatically starts the target application, if it is
not already running.

Step 2: Construct a message object

The next step is to construct a message to send to the application. You do this by creating a BridgeTalk
Message Object, and assigning values to its properties. You must specify the target application and the
message body, which is usually a script packaged into a string.

Scripts sent in messages can be very complex, and can use the full DOM of the target application. This
example defines a message script that accesses the Bridge DOM to request the number of files or folders
found in a specific folder:

var bt = new BridgeTalk; // create a new BridgeTalk message object
bt.target = "bridge"; // send this message to the Bridge application

Adobe Creative Suite 2
Bridge JavaScript Reference Interapplication Communication with Scripts 185

// the script to evaluate is contained in a string in the "body" property
bt.body = "app.browseTo (Folder ('C/MyPhotos')) ;
app.document .target.children.length;"

Step 3: Specify how to handle a response

If you want to handle a response for this message, or use the data that is returned from the script's
evaluation, you must set up the response-handling mechanism before you send the message. You do this
by defining the onResult callback in the message object.

The response to a message is, by default, the result of evaluation of the script contained in that message’s
body property. The target application might define some different kind of response; see Receiving

messages.

When the target has finished processing this message, it looks for an onResult callback in the message
object it received. If it is found, the target automatically invokes it, passing it the response. The response is
packaged into a string, which is in turn packaged into the body property of a new message object. That
message object is the argument to your onResult callback function.

This handler, for example, processes the returned result using a script-defined processResult function.
bt.onResult = function (returnBtObj)
{ processResult (returnBtObj.body) ; }

If you want to handle errors that might arise during script processing, you can define an onError callback in
the message object. For more information, see Handling responses from the message target.

Step 4: Send the message

To send the message, call the message object’s send method. You do not need to specify where to send
the message to, since the target application is set in the message itself.

bt.send() ;

The complete script looks like this:

// script to be executed in Photoshop CS2
#target "photoshop"
// check that the target app is installed
var targetApp = BridgeTalk.getSpecifier("bridge", "1");
if (targethpp)
// construct a message object
var bt = new BridgeTalk;
// the message is intended for Bridge
bt.target = "bridge";
// the script to evaluate is contained in a string in the "body" property
bt.body = "app.browseTo ('C/MyPhotos') ;";
app.document .target.children.length;"
// define result handler callback
bt.onResult = function (returnBtObj) {
processResult (returnBtObj.body); } //fn defined elsewhere
// send the message
bt.send() ;

Adobe Creative Suite 2
Bridge JavaScript Reference Interapplication Communication with Scripts 186

An application can be the target of a message; that is, it receives an unsolicited message from another
application. An unsolicited message is handled by the static BridgeTalk . onReceive callback function in
the target application. See Handling unsolicited messages.

An application that sends a message can receive response messages; that is, messages that come as the
result of requesting a response when a message was sent. These can be:

e The result of an error in processing the message
e A notification of receipt of the message

e Intermediate responses

e The final result of processing the message.

All of these response messages are sent automatically by the target application, and are handled by
callbacks defined in the sending message object. For details, see Handling responses from the message

target.

To specify how the application should handle unsolicited incoming messages, define a callback handler
function in the static onReceive property of the BridgeTalk class. This function takes a single argument,
a BridgeTalk Message Object.

The default behavior of the onReceive handler is to evaluate the body of the received message with
JavaScript, and return the result of that evaluation. (The result of evaluating a script is the result of the last
line of the script.) To return the result, it creates a new message object, encapsulates the result in a string in
the body property of that object, and passes that object to the onResult callback defined in the original
message.

If an error occurs on evaluation, the default onReceive handler returns the error information using a
similar mechanism. it creates a new message object, encapsulates the error information in a string in the
body property of that object, and passes that object to the onError callback defined in the original
message.

To change the default behavior set the BridgeTalk.onReceive property to a function definition in the
following form:

BridgeTalk.onReceive = function(bridgeTalkObject) {
// callback definition here

Vi
e The body property of the received message object contains the received data.
e The function can return any type.

The function that you define does not need to explicitly create and return a BridgeTalk message object.
The messaging framework creates a new BridgeTalk message object, and packages the return value of
the onReceive handler as a string in the body property of that object.

Return values are flattened into a string using the Unicode Transformation Format-8 (UTF-8) encoding. If
the function does not specify a return value, the resulting string is "undefined".

The result object is transmitted back to the sender if the sender has implemented an onResult callback
for the original message.

Adobe Creative Suite 2
Bridge JavaScript Reference Interapplication Communication with Scripts 187

» Message handling examples

This example shows the default mechanism for handling unsolicited messages received from other
applications. This simple handler executes the message's data as a script and returns the results of that
execution.

BridgeTalk.onReceive = function (message) {
return eval (message.body) ;
}

This example shows how you might extend the receive handler to process a new type of message.

BridgeTalk.onReceive = function (message) {
switch (message.type) {

case "Data":
return processData(message) ;
break;

default: //"ExtendScript"
return eval (mesage.body) ;

}

To handle responses to a message you have sent, you define callback handler functions in the message
object itself. The target application cannot send a response message back to the sender unless the
message object it received has the appropriate callback defined.

When your message is received by its target, the target application’s static BridgeTalk object’s
onReceive method processes that message, and can invoke one of the message object’s callbacks to
return a response. In each case, the messaging framework packages the response in a new message
object, whose target application is the sender. Your callback functions receive this response message
object as an argument.

A response message can be:
e The result of an error in processing the message. This is handled by the onError callback.

If an error occurs in processing the message body (as the result of a JavaScript syntax error, for
instance), the target application invokes the onError callback, passing a response message that
contains the error code and error message. If you do not have an onError callback defined, the error is
completely transparent. It can appear that the message has not been processed, since no result is ever
returned to the onResult callback.

e A notification of receipt of the message. This is handled by the onReceive callback.

Message sending is asynchronous. Getting a t rue result from the send method does not guarantee
that your message was actually received by the target application. If you want to be notified of the
receipt of your message, define the onReceive callback in the message object. The target sends back
the original message object to this callback, first replacing the body value with an empty string.

e Intermediate responses. These are handled by the onResult callback.

The script that you send can send back intermediate responses by invoking the original message
object’s sendResult method. It can send data of any type, but that data is packaged into a body string
in a new message object, which is passed to your callback. See Passing values between applications.

Adobe Creative Suite 2
Bridge JavaScript Reference Interapplication Communication with Scripts 188

e The final result of processing the message. This is handled by the onResult callback.

When it finishes processing your message, the target application can send back a result of any type. If
you have sent a script, and the target application is using the default BridgeTalk . onReceive callback
to process messages, the return value is the final result of evaluating that script. In any case, the return
value is packaged into a body string in a new message object, which is passed to your callback. See
Passing values between applications.

The following examples demonstrate how to handle simple responses and multiple responses, and how to
integrate error handling with response handling.

» Example: Receiving a simple response

In this example, an application script asks Bridge to find out how many files and folders are in a certain
folder, which the evaluation of the script returns. (The default BridgeTalk.onReceive method
processes this correctly.)

The onResult method saves that numberin fileCountResult, a script-defined property of the
message, for later use.

var bt = new BridgeTalk;
bt.target = "bridge";
bt.body = "app.browseTo ('C/MyPhotos"') ;
app.document .target.children.length;"
bt.onResult = function(retObj) ({
processFileCount (retObj.body) ;
}

bt .send() ;

» Example: Handling any error

In this example, the onError handler re-throws the error message within the sending application.

var bt = new BridgeTalk;

bt.onError = function (btObj) {
var errorCode = parselnt (btObj.headers ["Error-Code'"]) ;
throw new Error (errorCode, btObj.body) ;

}

» Example: Handling expected errors and responses

This example creates a message that asks Bridge to return XMP metadata for a specific file. The onResult
method processes the data using a script-defined processFileSize function. Any errors are handled by
the onError method. For example, if the file requested is not an existing file, the resulting error is
returned to the onError method.

var bt = new BridgeTalk;
bt.target = "bridge";
bt.body = "var tn = new Thumbnail ('C/MyPhotos/temp.jpg') ;
tn.metadata.FileSize;"
bt.onResult = function(resultMsg) {
processFileSize (resultMsg.body) ;
}

bt.onError = function(errorMsg) ({
var errCode = parselInt (errorMsg.headers ["Error-Code"]) ;

throw new Error (errCode, errorMsg.body) ;
}

bt.send() ;

Adobe Creative Suite 2
Bridge JavaScript Reference Interapplication Communication with Scripts 189

» Setting up a target to send multiple responses

This example integrates the sending of multiple responses with the evaluation of a message body. It sets
up a handler for message such as the one sent in the following example.

The target application (Bridge) defines a static onReceive method to allow for a new type of message,
which it calls an iterator. An i terator type of message expects the message . body to use the iteration
variable i within the script, so that different results are produced for each pass through the while loop.
Each result is sent back to the sending application with the sendResult method. When the

message . body has finished processing its task, it sets a flag to end the while loop.

// Code for processing the message and sending intermediate responses
// in the target application (Bridge)
BridgeTalk.onReceive = function (message) {
switch (message.type) {
case "iterator":
done = false;
i=0;
while (!done) {
// the message.body uses "i" to produce different results
// for each execution of the message.
// when done, the message.body sets "done" to true
// so this onReceive method breaks out of the loop.
message.sendResult (eval (message.body)) ;
i++;)
break;
default: //"ExtendScript"
return eval (message.body) ;

}
}

» Example: Setting up a sender to receive multiple responses

This example sends a message of the type iterator, to be handled by the onReceive handler in the
previous example.

The sending application creates a message whose script (contained in the body string) iterates through all
files in a specific folder (represented by a Bridge Thumbnail object), using the iterator variable i. For each
file in the folder, it returns FileSize metadata. For each contained folder, it returns -1. The last executed
line in the script is the final result value for the message.

The onResult method of the message object receives each intermediate result, stores it into an array,
resArr, and processes it immediately using a script-defined function processInterResult.

// Code for send message and handling response

// in the sending application (any CS2 application)
var idx = 0;
var resArr = new Array;

bt = new BridgeTalk;
bt.target = "bridge";

bt.type = "iterator";

bt.body ="
var fld = new Thumbnail (Folder ('C/Junk')) ;
if (1 == (fld.children.length - 1))

done = true; //no more files, end loop

Adobe Creative Suite 2
Bridge JavaScript Reference Interapplication Communication with Scripts 190

tn = fld.children[i];

if (tn.spec.constructor.name == 'File')
md = tn.metadata.FileSize;

else md = -1;

n.
’

// store intermediate results

bt.onResult = function (rObj) {
resArr[idx] = rObj.body;
processInterResult (resArr[idx]) ;
idx++;};

bt.onError = function (eObj) {
bt.error = eObj.body };

bt.send() ;

The BridgeTalk.onReceive static callback function can return values of any type. The messaging
framework, however, packages the response into a response message, and passes any returned values in
the message body;, first converting the result to a UTF-8-encoded string.

When your message object’s onResult callback receives a response, it must interpret the string it finds in
the body of the response message to obtain a result of the correct type. Results of various types can be
identified and processed as follows:

Number JavaScript allows you to access a string that contains a number directly as a number,
without doing any type conversion. However, be careful when using the plus operator
(+), which works with either strings or numbers. If one of the operands is a string, both
operands are converted to strings and concatenated.

String No conversion is required.

Boolean The result string is either "true" or "false". You can convert it to a true boolean by
evaluating it with the eval method.

Date The result string contains the date in the form:

"dow mmm dd yyyy hh:mm:ss GMT-nnnn".
For example "Wed Jun 23 2004 00:00:00 GMT-0700".

Array The result string contains a comma delimited list of the elements of the array. For
example, If the result array is [12, "test", 432],the message framework flattens
this into the string "12, test, 432",

As an alternative to simply returning the array, the message target can use the tosource
method to return the code used to create the array. In this case, the sender must
reconstitute the array by using the eval method on the result string in the response
body. See discussion below.

Adobe Creative Suite 2
Bridge JavaScript Reference Interapplication Communication with Scripts 191

When returning complex types (arrays and objects), the script that you send construct a result string itself,
using the tosource method to return the code used to create the array or object. In this case, the sender
must reconstitute the array or object by using the eval method on the result string in the response body.

» Passing an array with toSource and eval

For example, the following code sends a script that returns an array in this way. The onResult callback
that receives the response uses eval to reconstruct the array.

var bt = new BridgeTalk;
bt.target = "bridge";
// the script passed to the target application
// needs to return the array using "toSource"
bt.body = "var arr = [10, "this string", 324];
arr.toSource () ;"
bt.onResult = function(resObj) {
// use eval to reconstruct the array
arr = eval (resObj.body) ;
// Now you can access the returned array
for (i=0; i< arr.length(); i++)
doSomething (arr[il) ;
}
//launch the Bridge if it's not already running
if (!BridgeTalk.isRunning("bridge"))
BridgeTalk.launch ("bridge") ;
// send the message
bt.send() ;

» Passing an object with toSource and eval

This technique is the only way to pass objects between applications. For example, this code sends a script
that returns an object containing some of the metadata for a specific file, and defines an onresult callback
that receives the object.

var bt = new BridgeTalk;
bt.target = "bridge";

//the script passed to the target application
// returns the object using "toSource"
bt.body = "var tn = new Thumbnail (File ('C:\\Myphotos\\photol.jpg')) ;
var md = {fname:tn.metadata.FileName,
fsize:tn.metadata.FileSize};
md. toSource () ;"
//For the result, use eval to reconstruct the object
bt.onResult = function (resObj)
md = bt.result = eval (resObj.body) ;
// Now you can access fname and fsize properties
doSomething (md.fname, md.fsize);
}
//launch the Bridge if it's not already running
if (!BridgeTalk.isRunning("bridge"))
BridgeTalk.launch ("bridge") ;
// send the message
bt.send() ;

Adobe Creative Suite 2
Bridge JavaScript Reference Interapplication Communication with Scripts 192

» Passing a DOM object

You can send a script that returns a DOM object, but the resulting object contains only those properties
that were accessed within the script. For example, the following script requests the return of the Bridge
DOM Thumbnail object. Only the properties path and spec are accessed by the script, and only those
properties are returned:

var bt = new BridgeTalk;
bt.target = "bridge";
//set up the script passed to the target application
// to return the array using "toSource"
bt.body = "var tn = new Thumbnail (File ('C:\\Myphotos\\photol.jpg')) ;
var s = tn.spec; var p = tn.path;
tn.toSource () ;"
//For the result, use eval to reconstruct the object
bt.onResult = function(resObj) {
// use eval to reconstruct the object
tn = eval (resObj.body) ;
// Now the script can access tn.spec and tn.path,
// but no other properties of the Bridge DOM Thumbnail object
doSomething (tn.spec, tn.path);
}
// send the message
bt .send() ;

Adobe Creative Suite 2
Bridge JavaScript Reference Interapplication Communication with Scripts 193

This application programming interface (API) defines a communication protocol between Adobe Creative
Suite 2 applications. These objects are available to all ExtendScript scripts when any of the applications is
loaded.

The messaging protocol is extensible. Although it is primarily designed to send scripts, you can use it to
send other kinds of data.

The messaging API defines the BridgeTalk class. Static properties and methods of the class provide
access to environmental information relevant for communication between applications. Instantiate the
class to create a BridgeTalk message object, which encapsulates the message itself. For discussion and
examples, see Communicating Through Interapplication Messages.

Static properties and methods of this class provide a way for your script to determine basic messaging
system information before you create any specific message objects. Static methods allow you to check if
an application is installed and is already running, and to launch the application. A callback defined on the
class determines how the application processes incoming messages.

You can access static properties and methods in the BridgeTalk class, which is available in the global
namespace. For example:

var thisApp = BridgeTalk.appName;
Note: You must instantiate BridgeTalk class to create the BridgeTalk message object, which is used

to send message packets between applications. Dynamic properties and methods can be accessed
only in instances.

The BridgeTalk class provides these static properties, which are available in the global namespace:

appLocale | String The locale of this application, the locale portion of an application specifier;
see Application specifiers. When a message is sent, this is the locale of the
sending application. Read/Write.

appName String The name of this application, the appname portion of an application
specifier; see Application specifiers. When a message is sent, this is the name
of the sending application. Read/Write.

appVersion | String The version number of this application, the version portion of an application
specifier; see Application specifiers. When a message is sent, this is the
version of the sending application. Read/Write.

Bridge JavaScript Reference

Adobe Creative Suite 2
Interapplication Communication with Scripts 194

onReceive

Function | A callback function that this application applies to unsolicited incoming

messages. The default function evaluates the body of the received message
and returns the result of evaluation. To change the default behavior, set this
to a function definition in the following form:

BridgeTalk.onReceive = function(bridgeTalkObject) {

// act on received message

}i
The body property of the received message object contains the received
data. The function can return any type. See Handling unsolicited messages.

Note: This function is not applied to a message that is received in response
to a message sent from this application. Response messages are
processed by the onResult, onReceive, Or onError callbacks
associated with the sent message.

The BridgeTalk class provides these static properties, which are available in the global namespace:

bringToFront

Brings all windows of the specified application to the front of the

BridgeTalk.bringToFront (app) @ Screen.

In Mac OS, an application can be running but have no windows
open. In this case, calling this function might or might not open a
new window, depending on the application. For Bridge, it opens a
new browser window.

app A specifier for the target application; see Application specifiers.
getSpecifier Returns a complete specifier (see Application specifiers) for a
BridgeTalk.getSpecifier messaging-enabled application version installed on this computer,
(app, [version], [locale]) or null if the requested version of the application is not installed.
app The base name of the application to search for.
version Optional. The specific version number to search for. If 0 or not supplied, returns
the most recent version. If negative, returns the highest version up to and
including the absolute value.
If a major version is specified, returns the highest minor-version variation. For
example, if Photoshop CS2 9, 9.1, and 10 are installed:
BridgeTalk.Specifier("photoshop", "9")
=> ["photoshop-9.1"]
locale Optional. The specific locale to search for.

If not supplied and multiple language versions are installed, returns the version
for the current locale.

Adobe Creative Suite 2
Bridge JavaScript Reference Interapplication Communication with Scripts 195

>» Examples

Assuming installed applications include Photoshop CS2 8.0 en_us, Photoshop CS2 8.5 de_pE, Photoshop
(€S2 9.0 de_pE, and Photoshop CS2 9.5 de_DE, and that the current locale is en_us:

BridgeTalk.getSpecifier ("photoshop");

=> ["photoshop-8.0-en_US"]
BridgeTalk.getSpecifier ("photoshop", 0, "en US");

=> ["photoshop-8.0-en_US"]
BridgeTalk.getSpecifier ("photoshop", 0, "de DE");

=> ["photoshop-9.5-de_DE"]
BridgeTalk.getSpecifier ("photoshop", -9.2, "de DE");

=> ["photoshop-9.0-de_DE"]
BridgeTalk.getSpecifier ("photoshop", 8);

=> ["photoshop-8.0-us_EN"]
BridgeTalk.getSpecifier ("photoshop", 8, "de DE");

=> ["photoshop-8.5-de_DE"]

getTargets Returns an array of Application specifiers for messaging-enabled

BridgeTalk.getTargets applications installed on this computer.
([version], [locale])

e |If versionis supplied, returns the base name plus the version
information.

o |If localeis supplied, returns the full names, with both version
and locale information.

e If neither version nor locale is supplied, returns base specifiers
with neither version nor locale information.

version Optional. The specific version number to search for, or null to return the most
recent version, with version information.

e Specify only a major version number to return the highest minor-version
variation. For example, if Photoshop €S2 9, 9.1, and 10 are installed:
BridgeTalk.getTargets("9")
=> [photoshop-9.1]
e Specify a negative value to return all versions up to the absolute value of the
version number. For example:

BridgeTalk.getTargets("-9.1")
=> [photoshop-9.0,photoshop-9.1]

locale Optional. The specific locale to search for, or nul1 to return applications for all
locales, with locale information.

If not supplied when versionis supplied, returns specifiers with version
information only.

Adobe Creative Suite 2
Bridge JavaScript Reference Interapplication Communication with Scripts 196

» Examples

Assuming installed applications include Photoshop CS2 8.0 en_us, Photoshop CS2 9.0 de_pE, and
[llustrator CS2 9.0 de_DE:

BridgeTalk.getTargets() ;

=> [photoshop,illustrator]
BridgeTalk.getTargets("8.0")

=> [photoshop-8.0]
BridgeTalk.getTargets(null)

=> [photoshop-9.0, illustrator-9.0]
BridgeTalk.getTargets(null, "en US")

=> [photoshop-8.0-en_US, illustrator-9.0-en_US]
BridgeTalk.getTargets(null, null)

=> [photoshop-8.0-en_US, photoshop-9.0-de_DE, illustrator-9.0-en_US]
BridgeTalk.getTargets("9.0", null)

=> [photoshop-9.0-de_DE, illustrator-9.0-en_US]

isRunning Returns true if the given application is running and active on the
BridgeTalk.isRunning (app) local computer.

app A specifier for the target application; see Application specifiers.
launch Launches the given application on the local computer. Returns
BridgeTalk.launch (app undefined.
[, where])

It is not necessary to launch an application explicitly in order to
send it a message. Sending a message to an application that is not
running automatically launches it.

app A specifier for the target application; see Application specifiers.

where Optional. If the value "background" is specified, the application’s main window is
not brought to the front of the screen.

pump Checks all active messaging interfaces for outgoing and incoming
BridgeTalk.pump () messages, and processes them if there are any. Returns true if any
messages have been processed, false otherwise.

(Most applications have a message processing loop that continually
checks the message queues, so use of this method is rarely
required.)

Adobe Creative Suite 2
Bridge JavaScript Reference Interapplication Communication with Scripts 197

The message object defines the basic communication packet that is sent between applications. Its
properties allow you to specify the receiving application (the target), the data to send to the target (the
body), and the type of data that is sent. The messaging protocol is extensible; it allows you to define new
types of data for the type property, and to send and receive arbitrary additional information with the
headers property.

Create a new message object using a simple constructor:

var bt = new BridgeTalk;

Before you send a message to another application, you must set the target property to the receiving
application, and the body property to the data message (typically a script) you want to send.

body String The data payload of the message. Read/Write.

e If thisis an unsolicited message to another application, typically
contains a script packaged as a string. The target application's full
document object model (DOM) is available within the script.

e If this message is a result returned from the static BridgeTalk
onReceive method of a target application, directed to an onResult
callback in this object, contains the return result from that method
flattened into a string. See Passing values between applications.

e If this message contains an error notification for the onError
callback, contains the error message.

headers Object A JavaScript object containing script-defined headers. Read/Write.

Use this property to define custom header data to send supplementary
information between applications. You can add any number of new
headers. The headers are name/value pairs, and can be accessed with
the JavaScript dot notation (msgob7j . headers . propName), or bracket
notation (msgobj .headers [propName]). If the header name conforms to
JavaScript symbol syntax, use the dot notation. If not, use the bracket
notation.

The pre-defined header ["Error-Code"] is used to return error
messages to a sender. See below for pre-defined error code.
Examples of setting headers:

bt .headers.info = "Additional Information";
bt.headers ["Error-Code"] = 8;

Examples of getting header values:

var info = bt.headers.info;
var error = bt.headers ["Error-Code"];

sender String The application specifier for the sending application (see Application
specifiers). Read/Write.

Bridge JavaScript Reference

Adobe Creative Suite 2
Interapplication Communication with Scripts 198

target

timeout

type

String

The application specifier for the target, or receiving, application (see
Application specifiers). Read/Write.

Number The number of milliseconds before the message times out. Read/Write.

String

If a message has not been removed from the input queue for
processing before this time elapses, the message is discarded. If the
sender has requested that errors be transferred back by defining an
onError callback for the message, the target application sends a
timeout message back to the sender.

The message type, which indicates what type of data the body
contains. Read/Write. Default is ExtendScript.

You can define a type for script-defined data. If you do so, the target
application must have a static BridgeTalk onReceive method that
checks for and processes that type.

onError

Function

A callback function that the target application invokes to return an error
response to the sender. It can send JavaScript run-time errors or exceptions,
or C++ exceptions.

To define error-response behavior, set this to a function definition in the
following form:

bridgeTalkObj.onError = function(errorMsgObject) {
// error handler defined here

}:

The body property of the received message object contains the error

message, and the headers property contains the error code in its Error-Code
property. See Messaging Error Codes.

The function returns undefined.

Bridge JavaScript Reference

Adobe Creative Suite 2
Interapplication Communication with Scripts 199

onReceive Function

onResult Function

A callback function that the target application invokes to confirm that the
message was received. (Note that this is different from the static onReceive
method of the BridgeTalk class that handles unsolicited messages.)

To define a response to receipt notification, set this to a function definition in
the following form:
bridgeTalkObj.onReceive = function(origMsgObject) {
// handler defined here
}i
The target passes back the original message object, with the body property
set to the empty string.

The function returns undefined.

A callback function that the target application invokes to return a response to
the sender. This can be an intermediate response or the final result of
processing the message.

To handle the response, set this to a function definition in the following form:

bridgeTalkObj.onResult = function(responseMsgObject) {
// handler defined here
}i
The target passes a new message object, with the body property set to the
result string. This is the result of the target application’s static BridgeTalk
onReceive method, packaged as a UTF-8-encoded string. See Passing values
between applications.

send
bridgeTalkObj.send ()

Sends this message to the target application. Returns true if the message
could be sent immediately, false if it could not be sent or was queued for
sending later.

If the target application is not running and the message contains a body,
the messaging system automatically launches the target application. In
this case, the message is queued rather than sent immediately, and this
method returns false. The message is processed once the application is
running.

Sending the message does not guarantee that the target actually receives
it. You can request notification of receipt by defining an onReceive
callback for this message object. (Note that this is different from the static
onReceive method of the BridgeTalk class that handles unsolicited
messages.)

Adobe Creative Suite 2

Bridge JavaScript Reference Interapplication Communication with Scripts 200
sendResult When processing an unsolicited message, the static BridgeTalk
bridgeTalkobj.sendResult OnReceive method can return an intermediate result to the sender by

(result) calling this method in the received message object. It invokes the

onResult callback of the original message, passing a new message object
containing the specified result value.

This allows you to send multiple responses to messages.

Returns true if the received message has an onResult callback defined
and the response message can be sent, false otherwise.

result You can send data of any type as the result value. The messaging framework creates a
BridgeTalk Message Object, and flattens this value into a string which it stores in the
body of that message. See Passing values between applications.

Bridge JavaScript Reference

Adobe Creative Suite 2

Interapplication Communication with Scripts

201

The interapplication messaging protocol defines the following error codes, which are compatible with

ExtendScript error codes. Negative values indicate unrecoverable errors that cause ExtendScript to
terminate a running script.

1
8

47
48
49
50
51
52
53
54
56
57
58
59

General error
Syntax error

Bad argument list
Stack overrun

Out of memory
Uncaught exception

Bad URI

Cannot perform requested action

Internal error

Not yet implemented
Range error

Cannot convert

Type mismatch

File or folder does not exist
File of folder already exists
I/O device is not open
Read past EOF

I/O error

Permission denied
JavaScript execution
Cannot connect

Cannot resolve reference
I/O timeout

No response

Adobe Creative Suite 2
Interapplication Communication with Scripts 202

Bridge JavaScript Reference

Sample workflow automation scripts are provided with Adobe Creative Suite 2, at the following locations:

e Windows: C:\Program Files\Common Files\Adobe\StartupScripts
Mac OS: /Library/Application Support/Adobe/StartupScripts

AdobeLibraryl.jsx
AdobeLibrary2.jsx
AdobeScriptManager. jsx

e Windows: C:\Program Files\Common Files\Adobe\StartupScripts\Workflow

Automation Scripts
Mac OS: /Library/Application Support/Adobe/StartupScripts/Workflow

Automation Scripts
ContactSheet ID.jsx

ExportToFlash AI.jsx
ImportCameralmages BR.jsx

These samples demonstrate various kinds of scripting usage and application interactions. The code can be
used as a model of scripting style, and can be modified and expanded for your own use.

Photoshop
Illustrator
InDesign
Golive

Script Name Description

=< | Bridge

>

Generates a contact sheet from selected

Contact sheet (InDesign)
InDesign files, showing each page of each file.

>
>

Export to Flash Exports a selected file to Flash (SWF) format.

Automates import of files from a digital
camera.

Import files from camera

Utility that helps to manage existing or
developer-created scripts and place them in
the correct location in the application.

Script loader/manager

In addition to these, a sample Golive extension, BridgeSample, Is included with the GoLive SDK in the
Golive installation directory, under Adobe GoLive SDK 8.0/Samples. This module demonstrates
how to invoke Bridge from Adobe GoLive and communicate between Bridge and GoLive with messages.

10

ExtendScript Tools and Features

ExtendScript is the Adobe extended implementation of JavaScript, and is used by all

Adobe Creative Suite 2 applications that provide a scripting interface. In addition to implementing the
JavaScript language according to the W3C specification, ExtendScript provides certain additional features
and utilities.

e For help in developing, debugging, and testing scripts, ExtendScript provides:

e The ExtendScript Toolkit, an interactive development and testing environment for ExtendScript.

e A global debugging object, the Dollar ($) Object.

e Areporting utility for ExtendScript elements, the ExtendScript Reflection Interface.

e Inaddition, ExtendScript provides these tools and features:

e Alocalization utility for providing user-interface string values in different languages. See Localizing
ExtendScript Strings.

e Global functions for displaying short messages in dialog boxes. See User Notification Helper
Functions.

e An object type for specifying measurement values together with their units. See Specifying
Measurement Values.

e Tools for combining scripts, such as a #include directive, and import and export statements.
See Modular Programming Support.

e Support for extending or overriding math and logical operator behavior on a class-by-class basis.
See Operator Overloading.

e ExtendScript provides a common scripting environment for all Adobe Creative Suite 2 applications,
and allows interapplication communication through scripts.

e To identify specific Adobe Creative Suite 2 applications, scripts must use Application and
Namespace Specifiers.

e Applications can run scripts automatically on startup. See Script Locations and Checking
Application Installation.

e For details about interapplication communication, see Interapplication Communication with
Scripts.

The ExtendScript Toolkit provides an interactive development and testing environment for ExtendScript
in all Adobe Creative Suite 2 applications. It includes a full-featured, syntax-highlighting editor with
Unicode capabilities and multiple undo/redo support. The Toolkit allows you to:

e Single-step through JavaScripts inside a CS2 application.
e Inspect all data for a running script.
e Set and execute breakpoints.

The Toolkit is the default editor for ExtendScript files, which use the extension . §sx. You can use the
Toolkit to edit or debug scripts in JS or JSX files.

203

Adobe Creative Suite 2
Bridge JavaScript Reference ExtendScript Tools and Features 204

When you double-click a JSX file in the platform’s windowing environment, the script runs in the Toolkit,
unless it specifies a particular target application using the #target directive. For more information, see
Selecting a debugging target and Preprocessor directives.

The ExtendScript Toolkit initially appears with a default arrangement of panes, containing a default
configuration of tabs. You can adjust the relative sizes of the panes by dragging the separators up or down,
or right or left. You can regroup the tabs. To move a tab, drag the label into another pane.

| % Extendscript Toolkit ==
File Edit Debug Profile Window Help
| ExtendSeript Toakit [se] main v » um » v a %
JavaScript Console”\'-Scrip‘ts B, > i:j - :
L]
20 (e
2l | function datediff(b, a)
2zl 1
= = i m— 23 return- (bi-a) /1000;
Call Stack | Breakpoints| Dat& Brovssr i-!)_ gy 000
25
endTime = undefined | Z6|var FAST REPZTITIONS = 750000;
|
@ FAST_REPETITIONS =750000 Rk R B = UIRE
e ardenried |||® z&|var sLOW BEPETITIONS = 5000;
sl S pa [29|var SIEVE REPETITIONS= 10; |»
< | i1l | gl P | | [y]
Drag a tab to a new pane Destination pane is highlighted, and the new tab is added to the tab stack

If you drag a tab so that the entire destination pane is highlighted, it becomes another stacked tab in that
pane. If you drag a tab to the top or bottom of a pane (so that only the top or bottom bar of the destination
pane is highlighted), that pane splits to show the tabs in a tiled format.

Select target application Invoke tab flyout menus
| & Extendscript Toolkit \ ==&
File Edit Debug Profile ‘Window\ Help
;-ExtendScript Toolkit "’v.g_main ™ | | | | S %
- Jawateript Console Seripts \:)’ Data Browser >)
undefined
gpdTime = undefined ||
@ FAST_REPETITIONS = 750000 =]
: i = undefined il
Call Stack | Breakpoints y _\:)
Line 28 :
@ Line speed] . jsx ¥ m
27|var REPETITIQNS - 50000;]
@ 20|kar SLOV REPETITIONS - 5000: =
- 2%1war STEYFE REPETTTTOMS= 10: V
T By

Split pane shows Browser and Editor tabs

Adobe Creative Suite 2
Bridge JavaScript Reference ExtendScript Tools and Features 205

Each tab has a flyout menu, accessed through the arrow icon in the upper right corner. The same menu is
available as a context menu, which you invoke with a right click in the tab. This menu always includes a
Hide Pane command to hide that pane. Use the Window menu to show a hidden pane, or to bring it to
the front.

The Editor, which has a tab for each script, has an additional context menu for debugging, which appears
when you right-click in the line numbers area.

The Toolkit saves the current layout when you exit, and restores it at the next startup. It also saves and
restores the open documents, the current positions within the documents, and any breakpoints that have
been set.

e If you do not want to restore all settings on startup, hold sHIFT while the Toolkit loads to restore default
settings. This reconnects to the last application and engine that was selected.

e If you want to restore the layout settings on startup, but not load the previously open documents,
choose Start with a clean workspace in the Preferences dialog.

The Toolkit can debug multiple applications at one time. If you have more than one

Adobe Creative Suite 2 application installed, use the drop-down list at the upper left under the menu bar
to select the target application. All installed applications that use ExtendScript are shown in this list. If you
select an application that is not running, the Toolkit prompts for permission to run it.

All available engines in the selected target application are shown in a drop-down list to the right of the
application list, with an icon that shows the current debugging status of that engine. A target application
can have more than one ExtendScript engine, and more than one engine can be active, although only one
is current. An active engine is one that is currently executing code, is halted at a breakpoint, or, having
executed all scripts, is waiting to receive events. An icon by each engine name indicates whether it is
running, halted, or waiting for input:

- running
¥ halted
waiting

The current engine is the one whose data and state is displayed in the Toolkit’s panes. If an application has
only one engine, its engine becomes current when you select the application as the target. If there is more
than one engine available in the target application, you can select an engine in the list to make it current.

When you open the Toolkit, it attempts to reconnect to the same target and engine that was set last time
it closed. If that target application is not running, the Toolkit prompts for permission to launch it. If
permission is refused, the Toolkit itself becomes the target application.

If the target application that you select is not running, the Toolkit prompts for permission and launches the
application. Similarly, if you run a script that specifies a target application that is not running (using the
#target directive), the Toolkit prompts for permission to launch it. If the application is running but not
selected as the current target, the Toolkit prompts you to switch to it.

Adobe Creative Suite 2
Bridge JavaScript Reference ExtendScript Tools and Features 206

If you select an application that cannot be debugged in the Toolkit (such as Adobe Help), an error dialog
reports that the Toolkit cannot connect to the selected application.

The ExtendScript Toolkit is the default editor for JSX files. If you double-click a JSX file in a file browser, the
Toolkit looks for a #target directive in the file and launches that application to run the script; however, it
first checks for syntax errors in the script. If any are found, the Toolkit displays the error in a message box
and quits silently, rather than launching the target application. For example:

| Script Error &

Ertar in C:iphotashop. jsx
Line 14: #include "Includefile. js"

File o Folder does nok exisk

The Scripts tab offers a list of debuggable scripts for the target application, which can be JS or JSX files or
(for some applications) HTML files that contain embedded scripts.

Javagoript Conzaole | Scripts \:'j

1042693 jz
Sourcel RO jax
speed] jsx

Select a script in this tab to load it and display its contents in the editor pane, where you can modify it, save
it, or run it within the target application.

The Data Browser tab is your window into the JavaScript engine. It displays all live data defined in the
current context, as a list of variables with their current values. If execution has stopped at a breakpoint, it
shows variables that have been defined using var in the current function, and the function arguments. To
show variables defined in the global or calling scope, use the Call Stack to change the context (see The call
stack).

You can use the Data Browser to examine and set variable values.

e Click a variable name to show its current value in the edit field at the top of the tab.

e To change the value, enter a new value and press ENTER. If a variable is read-only, the edit field is
disabled.

.\
(¥

Data Browser

[object Object] - p—— Display or modify selected variable’s value
) name = "Michael Daurling” — %] |
+ photoshop = [object Object] ———+————— Object opened to show properties

[¢ alwaysEnabled = function [)

P batch = function [/ &ray "/ f

[+ batchFromBridge = function [|
% >

Adobe Creative Suite 2
Bridge JavaScript Reference ExtendScript Tools and Features 207

The flyout menu for this tab lets you control the amount of data displayed:
e Show Global Functions toggles the display of all global function definitions.

o Show Object Methods toggles the display of all functions that are attached to objects. Most often, the
interesting data in an object are its callable methods.

e Show JavaScript Language Elements toggles the display of all data that is part of the JavaScript
language standard, such as the Array constructor or the Math object. An interesting property is the
__proto__ property, which reveals the JavaScript object prototype chain.

Each variable has a small icon that indicates the data type. An invalid object is a reference to an object that
has been deleted. If a variable is undefined, it does not have an icon.

S null

@@ Boolean
Number
(] String

[+ Object

@ Invalid object

You can inspect the contents of an object by clicking its icon. The list expands to show the object's
properties (and methods, if Show Object Methods is enabled), and the triangle points down to indicate
that the object is open.

Note: In Photoshop CS2 the Data Browser pane is populated only during the debugging of a JavaScript
program within Photoshop.

The JavaScript console is a command shell and output window for the currently selected JavaScript
engine. It connects you to the global namespace of that engine.

Javalcript Console (¥

a=[11,22.33]: a — JavaScript command line
11,22,33 JavaScript output

£ »

The command line entry field accepts any JavaScript code, and you can use it to evaluate expressions or
call functions. Enter any JavaScript statement on the command line and execute it by pressing ENTER. The
statement executes within the stack scope of the line highlighted in the Call Stack tab, and the result
appears in the output field.

Adobe Creative Suite 2
Bridge JavaScript Reference ExtendScript Tools and Features 208

e The command line input field keeps a command history of 32 lines. Use the Up and Down Arrow keys
to scroll through the previous entries.

e Commands entered in this field execute with a timeout of one second. If a command takes longer than
one second to execute, the Toolkit generates a timeout error and terminates the attempt.

The output field is standard output for JavaScript execution. If any script generates a syntax error, the error
is displayed here along with the file name and the line number. The Toolkit displays errors here during its
own startup phase. The tab’s flyout menu allows you to clear the contents of the output field and change
the size of the font used for output.

The Call Stack tab is active while debugging a program. When an executing program stops because of a
breakpoint or runtime error, the tab displays the sequence of function calls that led to the current
execution point. The Call Stack tab shows the names of the active functions, along with the actual
arguments passed in to that function.

For example, this stack pane shows a break occurring at a breakpoint in a function dayOfweek:

Call Stack ‘_!j demo. jzx \!")
[Top Lewvel] 1| function dayOffesk(] { |~
dayOfufeek() 2 var d = new Date; Fl
@ 3 return d.getDay():
4|}
5
6| day = daylflleeki]: 'v:
! =
L4 >

The function containing the breakpoint is highlighted in both the Call Stack and the Editor tabs.

You can click any function in the call hierarchy to inspect it. In the Editor, the line containing the function
call that led to that point of execution is marked with a green background. In the example, when you
select the line [Top Levell] in the call stack, the Editor highlights the line where the dayOfWeek
function was called.

Call Stack (x| [demajsx 0]
[Top Level] 1|function dayOfWesk() { |»
dayOfweekl] 2 var d = new Date; B
3 return d.getDay();
41
5
6 day - day0flleck(] =
) gl
£2 i [>

Switching between the functions in the call hierarchy allows you to trace how the current function was
called. The Console and Data Browser tabs coordinate with the Call Stack pane. When you select a function
in the Call Stack:

e The Console pane switches its scope to the execution context of that function, so you can inspect and
modify its local variables. These would otherwise be inaccessible to the running JavaScript program
from within a called function.

e The Data Browser pane displays all data defined in the selected context.

Adobe Creative Suite 2

Bridge JavaScript Reference ExtendScript Tools and Features 209

You can open any number of Script Editor tabs; each displays one Unicode source code document. The
editor supports JavaScript syntax highlighting, JavaScript syntax checking, multiple undo and redo
operations, and advanced search and replace functionality.

You can use the mouse or special keyboard shortcuts to move the insertion point or to select text in the
editor.

Click the left mouse button in the editor to move the position caret.

To select text with the mouse, click in unselected text, then drag over the text to be selected. If you drag
above or below the currently displayed text, the text scrolls, continuing to select while scrolling. You can
also double-click to select a word, or triple-click to select a line.

To initiate a drag-and-drop of selected text, click in the block of selected text, then drag to the destination.
You can drag text from one editor pane to another. You can also drag text out of the Toolkit into another
application that accepts dragged text, and drag text from another application into a Toolkit editor.

You can drop files from the Explorer or the Finder onto the Toolkit to open them in an editor.

Besides the usual keyboard input, the editor accepts these special movement keys. You can also select text
by using a movement key while pressing SHIFT.

Enter

Backspace

Delete

Left arrow

Right arrow

Up arrow

Down arrow

Page up

Page down

CTRL + Up arrow
Ctrl + Down arrow
CTRL + Page up
CTRL + page down
CTRL + Left arrow

CTRL + right arrow

Insert a Line Feed character

Delete character to the left

Delete character to the right

Move insertion point left one character

Move insertion point right one character

Move insertion point up one line; stay in column if possible
Move insertion point down one line; stay in column if possible
Move insertion point one page up

Move insertion point one page down

Scroll up one line without moving the insertion point
Scroll down one line without moving the insertion point
Scroll one page up without moving the insertion point
Scroll one page down without moving the insertion point
Move insertion point one word to the left

Move insertion point one word to the right

Adobe Creative Suite 2

Bridge JavaScript Reference ExtendScript Tools and Features 210
Home Move insertion point to start of line
End Move insertion point to end of line
CTRL + Home Move insertion point to start of text
CTRL+ End Move insertion point to end of text

The editor supports extended keyboard input via IME (Windows) or TMS (Mac OS). This is especially
important for Far Eastern characters.

Before running the new script or saving the text as a script file, you can check whether the text contains
JavaScript syntax errors. Choose Check Syntax from the Edit menu or from the Editor’s right-click context
menu.

e If the script is syntactically correct, the status line shows "No syntax errors".

e If the Toolkit finds a syntax error, such as a missing quote, it highlights the affected text, plays a sound,
and shows the error message in the status line so you can fix the error.

You can debug the code in the currently active Editor tab. Select one of the debugging commands to
either run or to single-step through the program.

When you run code from the Editor, it runs in the current target application’s selected JavaScript engine.
The Toolkit itself runs an independent JavaScript engine, so you can quickly edit and run a script without
connecting to a target application.

If you let your mouse pointer rest over a variable or function in an Editor tab, the result of evaluating that
variable or function is displayed as a help tip. When you are not debugging the program, this is helpful
only if the variables and functions are already known to the JavaScript engine. During debugging,
however, this is an extremely useful way to display the current value of a variable, along with its current
data type.

You can turn off the display of help tips using the Display JavaScript variables and Enable Ul help tips
checkboxes on the Help Options page of the Preferences dialog.

The debugging commands are available from the Debug menu, from the Editor’s right-click context
menu, through keyboard shortcuts, and from the toolbar buttons. Use these menu commands and
buttons to control the execution of code when the JavaScript Debugger is active.

Adobe Creative Suite 2

Bridge JavaScript Reference

ExtendScript Tools and Features 211

Run F5 (Windows)
b Continue Ctrl R (Mac OS)

Break Ctrl F5 (Windows)
i Cmd . (Mac OS)
Stop Shift F5 (Windows)
. Ctrl K (Mac OS)
Step Over F10 (Windows)
» Ctrl S (Mac O5)
StepInto F11 (Windows)
v Ctrl T (Mac OS)
A Step Out Shift F11 (Windows)

Ctrl U (Mac OS)

Starts or resumes execution of a script.

Disabled when script is executing.

Halts the currently executing script temporarily and
reactivates the JavaScript Debugger.

Enabled when a script is executing.

Stops execution of the script and generates a runtime error.

Enabled when a script is executing.

Halts after executing a single JavaScript line in the script. If
the statement calls a JavaScript function, executes the
function in its entirety before stopping (do not step into the
function).

Halts after executing a single JavaScript line statement in the
script or after executing a single statement in any JavaScript
function that the script calls.

When paused within the body of a JavaScript function,
resumes script execution until the function returns.

When paused outside the body of a function, resumes script
execution until the script terminates.

While the engine is running, an icon

._.'

the script is active.

in the upper right corner of the Toolkit window indicates that

When the execution of a script halts because the script reached a breakpoint, or when the script reaches
the next line when stepping line by line, the Editor displays the current script with the current line
highlighted in yellow.

dermo.jsx

=

|l e L s B R T Y O TV

~

function day0fWeek(] |
var d = new Date;
var davy;
try { // test daylfileek
day = d.getDaylfleeck(];
'

catch (error) { // no day0fileck
| day = -1;

!

return day;

b

If the script encounters a runtime error, the Toolkit halts the execution of the script, displays the current
script with the current line highlighted in red, displays the error message in the status line, and plays a

sound.

Adobe Creative Suite 2
Bridge JavaScript Reference ExtendScript Tools and Features 212

derno. jsa* S

1| function day0fWeek () { s

Scripts often use a t ry/catch clause to execute code that may cause a runtime error, in order to catch the
error programmatically rather than have the script terminate. You can choose to allow regular processing
of such errors using the catch clause, rather than breaking into the debugger. To set this behavior,
choose Debug > Don't Break On Guarded Exceptions. Some runtime errors, such as Out Of Memory,
always cause the termination of the script, regardless of this setting.

When debugging a script, it is often helpful to make it stop at certain lines so that you can inspect the state
of the environment, whether function calls are nested properly, or whether all variables contain the
expected data.

e To stop execution of a script at a given line, click to the left of the line number to set a breakpoint. A
filled dot indicates the breakpoint.

e Click a second time to temporarily disable the breakpoint; the icon changes to an outline.

e Click a third time to delete the breakpoint. The icon is removed.

Some breakpoints need to be conditional. For example, if you set a breakpoint in a loop that is executed
several thousand times, you would not want to have the program stop each time through the loop, but
only on each 1000th iteration.

You can attach a condition to a breakpoint, in the form of a JavaScript expression. Every time execution
reaches the breakpoint, it runs the JavaScript expression. If the expression evaluates to a nonzero number
or true, execution stops.

To set a conditional breakpoint in a loop, for example, the conditional expression could be "i >= 1000",
which means that the program execution halts if the value of the iteration variable 1 is equal to or greater
than 1000.

You can set breakpoints on lines that do not contain any code, such as comment lines. When the Toolkit
runs the program, it automatically moves such a breakpoint down to the next line that actually contains
code.

Breakpoint icons

Each breakpoint is indicated by an icon to the left of the line number. The icon for a conditional breakpoint
is a diamond, while the icon for an unconditional breakpoint is round. Disabled breakpoints are indicated
by an outline icon, while active ones are filled.

@ Unconditional breakpoint. Execution stops here.

o Unconditional breakpoint, disabled. Execution does not stop.

Adobe Creative Suite 2
Bridge JavaScript Reference ExtendScript Tools and Features 213

\ 4 Conditional breakpoint. Execution stops if the attached JavaScript expression evaluates to true.

{} Conditional breakpoint, disabled. Execution does not stop.

The Breakpoints tab

The Breakpoints tab displays all breakpoints set in the current Editor tab. You can use the tab’s flyout
menu to add, change, or remove a breakpoint.

Ereakpoints ®
@ Line1

O Line 2

& Line 3 when [d.getDay(] > 2]

<» Line 4 when [d 1= null)

You can edit a breakpoint by double-clicking it, or by selecting it and choosing Add or Change from the
context menu. A dialog allows you to change the line number, the breakpoint’s enabled state, and the
condition statement.

| change Breakpoint &

Lime: 3 Enabled

Condition: d.getDa] > 2

[Femave] | Ok, | [Cancel]

Whenever execution reaches this breakpoint, the debugger evaluates this condition. If it does not
evaluate to true, the breakpoint is ignored and execution continues. This allows you to break only when
certain conditions are met, such as a variable having a particular value.

The Profiling tool helps you to optimize program execution. When you turn profiling on, the JavaScript
engine collects information about a program while it is running. It counts how often the program
executed a line or function, or how long it took to execute a line or function. You can choose exactly which
profiling data to display.

Because profiling significantly slows execution time, the Profile menu offers these profiling options.

Ooff Profiling turned off. This is the default.

Functions The profiler counts each function call. At the end of execution, displays the total
to the left of the line number where the function header is defined.

Lines The profiler counts each time each line is executed. At the end of execution,
displays the total to the left of the line number.

Consumes more execution time, but delivers more detailed information.

Bridge JavaScript Reference

Adobe Creative Suite 2
ExtendScript Tools and Features 214

Add Timing Info

No Profiler Data
Show Hit Count
Show Timing
Erase Profiler Data

Save Data As

Instead of counting the functions or lines, records the time taken to execute
each function or line. At the end of execution, displays the total number of
microseconds spent in the function or line, to the left of the line number.

This is the most time-consuming form of profiling.
When selected, do not display profiler data.

When selected, display hit counts.

When selected, display timing data.

Clear all profiling data.

Save profiling data as comma-separated values in a CSV file that can be loaded
into a spreadsheet program such as Excel.

When execution halts (at termination, at a breakpoint, or due to a runtime error), the Toolkit displays this
information in the Editor, line by line. The profiling data is color coded:

e Green indicates the lowest number of hits, or the fastest execution time.

e Red indicates trouble spots, such as a line that has been executed many times, or which line took the
most time to execute.

dermno. jsx ®
= 1| function day0fWeek(] {
53 = var d = new Date;
_ 3 return d.getDay(];
23 a1

5

G| day = day0fWeek():

i
< 1 [

This example displays timing information for the program, where the fastest line took 4 microseconds to
execute, and the slowest line took 29 microseconds. The timing might not be accurate down to the
microsecond; it depends on the resolution and accuracy of the hardware timers built into your computer.

Adobe Creative Suite 2
Bridge JavaScript Reference ExtendScript Tools and Features 215

This global ExtendScript object provides a number of debugging facilities and informational methods. The
properties of the $ object allow you to get global information such as the most recent run-time error, and
set flags that control debugging and localization behavior. The methods allow you to output text to the
JavaScript Console during script execution, control execution and other ExtendScript behavior
programmatically, and gather statistics on object use.

build Number The ExtendScript build number. Read only.

buildDate Date The date ExtendScript was built. Read only.

error Error The most recent run-time error information, contained in a
String JavaScript Error object.

Assigning error text to this property generates a run-time error;
however, the preferred way to generate a run-time error is to throw
an Error object.

flags Number Gets or sets low-level debug output flags. A logical AND of the
following bit flag values:

0x0002 (2): Displays each line with its line number as it is
executed.

0x0040 (64): Enables excessive garbage collection. Usually,
garbage collection starts when the number of objects has
increased by a certain amount since the last garbage
collection. This flag causes ExtendScript to garbage collect
after almost every statement. This impairs performance
severely, but is useful when you suspect that an object gets
released too soon.

0x0080 (128): Displays all calls with their arguments and the
return value.

0x0100 (256): Enables extended error handling (see strict).

0x0200 (512): Enables the localization feature of the tostring
method. Equivalent to the localize property.

global Object Provides access to the global object, which contains the JavaScript
global namespace.

level Number Enables or disables the JavaScript debugger. One of:

0: No debugging
1: Break on runtime errors
2: Full debug mode

locale String Gets or sets the current locale. The string contains five characters in
the form r1,_rr, where rris an ISO 639 language specifier, and rris
an I1SO 3166 region specifier.

Initially, this is the value that the application or the platform returns
for the current user. You can set it to temporarily change the locale
for testing. To return to the application or platform setting, set to
undefined, null, or the empty string.

Adobe Creative Suite 2
Bridge JavaScript Reference ExtendScript Tools and Features 216

localize Boolean Enable or disable the extended localization features of the built-in
toString method. See Localizing ExtendScript Strings.

memCache Number Gets or sets the ExtendScript memory cache size in bytes.

objects Number The total count of all JavaScript objects defined so far. Read only.

os String The current operating system version. Read only.

screens Array An array of objects containing information about the display screens

attached to your computer. Each object has the properties left, top,
right, and bottom, which contain the four corners of each screen in
global coordinates. A property primary is true if that object
describes the primary display.

strict Boolean When true, any attempt to write to a read-only property causes a
runtime error. Some objects do not permit the creation of new
properties when true.

version String The version number of the ExtendScript engine as a three-part
number and description; for example: "3.6.5 (debug)" Read only.

about Displays the About box for the ExtendScript component, and returns
$.about () the text of the About box as a string.
bp Executes a breakpoint at the current position. Returns undefined.

$.bp ([condition]) If no condition is needed, it is recommended that you use the JavaScript

debugger statement in the script, rather than this method.

condition Optional. A string containing a JavaScript statement to be used as a condition. If the
statement evaluates to true or nonzero when this point is reached, execution stops.

clearbp Removes a breakpoint from the current script. Returns undefined.
S.clearbp ([line])

line Optional. The line at which to clear the breakpoint. If 0 or not supplied, clears the
breakpoint at the current line number.

gc Initiates garbage collection. Returns undefined.
$.gc ()
getenv Returns the value of the specified environment variable, or nu11 if no
$.getenv (envname) such variable is defined.

envname The name of the environment variable.
list Collects object information into a table and returns this table as a string.
$.list ([classname]) See Object statistics below.

classname Optional. The type of object about which to collect information. If not supplied,

collects information about all objects currently defined.

Adobe Creative Suite 2

Bridge JavaScript Reference ExtendScript Tools and Features 217
setbp Sets a breakpoint in the current script. Returns undefined.
S.setbp

If no arguments are needed, it is recommended that you use the

([1ine, dition]) - . . .
Hhe, conditien JavaScript debugger statement in the script, rather than this method.

line Optional. The line at which to stop execution. If 0 or not supplied, sets the breakpoint
at the current line number.

condition Optional. A string containing a JavaScript statement to be used for a conditional
breakpoint. If the statement evaluates to true or nonzero when the line is reached,
execution stops.

sleep Suspends the calling thread for the given number of milliseconds.
$S.sleep (milliseconds) Returns undefined.

During a sleep period, checks at 100 millisecond intervals to see
whether the sleep should be terminated. This can happen if there is a
break request, or if the script timeout has expired.

milliseconds The number of milliseconds to wait.

summary Collects a summary of object counts into a table and returns this table
$.summary ([classname]) as a string. The table shows the number of objects in each specified
class. For example:
3 Array
5 String
classname Optional. The type of object to count. If not supplied, counts all objects currently
defined.
write Writes the specified text to the JavaScript Console. Returns undefined.
S.write
(text[, text...]...)
text One or more strings to write, which are concatenated to form a single string.
writeln Writes the specified text to the JavaScript Console and appends a
$.writeln linefeed sequence. Returns undefined.
(text[, text...]...)
text One or more strings to write, which are concatenated to form a single string.

The output from $.1ist () is formatted as in the following example.

Address L Refs Prop Class Name
0092196¢ 4 0 Function [toplevel]

00976c8c 2 1 Object Object

00991bc4L | 1 1 LOTest LOTest

0099142cL 2 2 Function LOTest

00991294 1 0 Object Object workspace

Adobe Creative Suite 2
Bridge JavaScript Reference ExtendScript Tools and Features 218

The columns show the following object information.

Address The physical address of the object in memory.

L This column contains the letter "L" if the object is a LiveObject (which is an internal data
type).

Refs The reference count of the object.

Prop A second reference count for the number of properties that reference the object. The

garbage collector uses this count to break circular references. If the reference count is not
equal to the number of JavaScript properties that reference it, the object is considered to
be used elsewhere and is not garbage collected.

Class The class name of the object.

Name The name of the object. This name does not reflect the name of the property the object has
been stored into. The name is mostly relevant to Function objects, where it is the name of
the function or method. Names in brackets are internal names of scripts. If the object has an
ID, the last column displays that ID.

Adobe Creative Suite 2
Bridge JavaScript Reference ExtendScript Tools and Features 219

ExtendScript provides a reflection interface that allows you to find out everything about an object,
including its name, a description, the expected data type for properties, the arguments and return value
for methods, and any default values or limitations to the input values.

Every object has a reflect property that returns a reflection object that reports the contents of the
object. You can, for example, show the values of all the properties of an object with code like this:

var f= new File ("myfile");
var props = f.reflect.properties;
for (var i = 0; i < props.length; i++) {
S.writeln('this property ' + props[i] .name + ' is ' + f[props[i] .namel);
}

All properties are read only.

description String Short text describing the reflected object, or undefined if no
description is available.

help String Longer text describing the reflected object more completely, or
undefined if no description is available.

methods Array of An Array of Reflectioninfo Objects containing all methods of the
Reflectioninfo | reflected object, defined in the class or in the specific instance.

name String The class name of the reflected object.

properties Array of An Array of Reflectionlnfo Objects containing all properties of the

Reflectioninfo | reflected object, defined in the class or in the specific instance. For
objects with dynamic properties (defined at runtime) the list contains
only those dynamic properties that have already been accessed by
the script. For example, in an object wrapping an HTML tag, the
names of the HTML attributes are determined at run time.

find Returns the ReflectionInfo Object for the named property of the

reflectionObj.find (name) reflected object, or nu11 if no such property exists. Use this method to
get information about dynamic properties that have not yet been
accessed, but that are known to exist.

name The property for which to retrieve information.

» Examples
This code determines the class name of an object:

obj = new String ("hi");
obj.reflect.name; // => String

Adobe Creative Suite 2
Bridge JavaScript Reference ExtendScript Tools and Features 220

This code gets a list of all methods:

obj = new String ("hi");
obj.reflect.methods; //=> indexOf,slice, ...
obj.reflect.find ("indexOf"); // => the method info

This code gets a list of properties:

Math.reflect.properties; //=> PI,LOG10, ...

This code gets the data type of a property:
Math.reflect.find ("PI") .type; // => number

This object contains information about a property, a method, or a method argument.

e You canaccess ReflectionInfo objectsin a Reflection Object's properties and methods arrays,
by name or index:

obj = new String ("hi");
obj.reflect.methods[0];
obj.reflect.methods ["indexOf"] ;

e You can access the ReflectionInfo objects for the arguments of a method in the arguments array
of the ReflectionInfo object for the method, by index:

obj.reflect.methods ["indexOf"] .arguments [0] ;

arguments Array of For a reflected method, an array of ReflectionInfo Objects
Reflectioninfo describing each method argument.

dataType String The data type of the reflected element. One of:

boolean

number

string

Classname: The class name of an object.

Note: Class names start with a capital letter. Thus, the value
string stands for a JavaScript string, while stringis a
JavaScript string wrapper object.

*: Any type. This is the default.

null

undefined: Return data type for a function that does not
return any value.

unknown

defaultValue any The default value for a reflected property or method argument,
or undefined if there is no default value, if the property is
undefined, or if the element is a method.

description String Short text describing the reflected object, or undefined if no
description is available.

Adobe Creative Suite 2
Bridge JavaScript Reference ExtendScript Tools and Features 221

help String Longer text describing the reflected object more completely, or
undefined if no description is available.

isCollection Boolean When true, the reflected property or method returns a
collection; otherwise, false.

max Number The maximum numeric value for the reflected element, or
undefined if there is no maximum or if the element is a method.

min Number The minimum numeric value for the reflected element, or
undefined if there is no minimum or if the element is a method.

name String The name of the reflected element. A string, or a number for an
Number array index.
type String The type of the reflected element. One of:

readonly: A read-only property.

readwrite: A read-write property.

createonly: A property that is valid only during creation of an
object.

method: A method.

Adobe Creative Suite 2
Bridge JavaScript Reference ExtendScript Tools and Features 222

Localization is the process of translating and otherwise manipulating an interface so that it looks as if it
had been originally designed for a particular language. ExtendScript gives you the ability to localize the
strings in your script’s user interface. The language is chosen by the application at startup, according to
the current locale provided by the operating system.

For portions of your user interface that are displayed on the screen, you may want to localize the displayed
text. You can localize any string explicitly using the Global localize function, which takes as its argument a
localization object containing the localized versions of a string.

A localization object is a JavaScript object literal whose property names are locale names, and whose
property values are the localized text strings. The locale name is a standard language code with an
optional region identifier. For details of the syntax, see Locale names.

In this example, a msg object contains localized text strings for two locales. This object supplies the text for
an alert dialog.

msg = { en: "Hello, world", de: "Hallo Welt" };
alert (msg);

ExtendScript matches the current locale and platform to one of the object's properties and uses the
associated string. On a German system, for example, the property de: "Hallo Welt" is converted to
the string "Hallo Welt".

Some localization strings need to contain additional data whose position and order may change
according to the language used.

You can include variables in the string values of the localization object, in the form %n. The variables are
replaced in the returned string with the results of JavaScript expressions, supplied as additional
arguments to the 1ocalize function. The variable $1 corresponds to the first additional argument, %2 to
the second, and so on.

Because the replacement occurs after the localized string is chosen, the variable values are inserted in the
correct position. For example:

today = {
en: "Today is %1/%2.",
de: "Heute ist der %2.%1."
}i
d = new Date() ;
alert (localize (today, d.getMonth()+1l, d.getDate()));

ExtendScript offers an automatic localization feature. When it is enabled, you can specify a localization
object directly as the value of any property that takes a localizable string, without using the 1ocalize
function. For example:

msg = { en: "Yes", de: "Ja", fr: "Oui" };
alert (msg);

Adobe Creative Suite 2
Bridge JavaScript Reference ExtendScript Tools and Features 223

To use automatic translation of localization objects, you must enable localization in your script with this
statement:

S.localize = true;

The localize function always performs its translation, regardless of the setting of the $.1ocalize
variable. For example:

msg = { en: "Yes", de: "Ja", fr: "Oui" };
//0nly works if the $.localize=true

alert (msg);

//Always works, regardless of $.localize value
alert (localize (msg)) ;

If you need to include variables in the localized strings, use the 1ocalize function.

A locale name is an identifier string in that contains an I1SO 639 language specifier, and optionally an ISO
3166 region specifier, separated from the language specifier by an underscore.

e TheISO 639 standard defines a set of two-letter language abbreviations, such as en for English and de
for German.

e TheISO 3166 standard defines a region code, another two-letter identifier, which you can optionally
append to the language identifier with an underscore. For example, en_Us identifies U.S. English,
while en_GB identifies British English.

This object defines one message for British English, another for all other flavors of English, and another for
all flavors of German:
message = {
en GB: "Please select a colour."

en: "Please select a colour."
de: "Bitte wahlen Sie eine Farbe."

}i

If you need to specify different messages for different platforms, you can append another underline
character and the name of the platform, one of Win, Mac, or Unix. For example, this objects defines one
message in British English to be displayed in Mac OS, one for all other flavors of English in Mac OS, and one
for all other flavors of English on all other platforms:

pressMsg = {
en GB Mac: "Press Cmd-S to select a colour.",
en_Mac: "Press Cmd-S to select a color.",
en: "Press Ctrl-S to select a color."

}i

All of these identifiers are case sensitive. For example, EN_US is not valid.

» How locale names are resolved
1. ExtendScript gets the hosting application’s locale; for example, en US.
2. It appends the platform identifier; for example, en_US Win.

3. Itlooks for a matching property, and if found, returns the value string.

4. If not found, it removes the platform identifier (for example, en US) and retries .

Adobe Creative Suite 2
Bridge JavaScript Reference ExtendScript Tools and Features 224

5. If not found, it removes the region identifier (for example, en) and retries .
6. If not found, it tries the identifier en (that is, the default language is English).

7. If not found, it returns the entire localizer object.

ExtendScript stores the current locale in the variable $. 1ocale. This variable is updated whenever the
locale of the hosting application changes.

To test your localized strings, you can temporarily reset the locale. To restore the original behavior, set the
variable to nul1, false, 0, or the empty string. An example:

$.locale = "ru"; // try your Russian messages
$.locale null; // restore to the locale of the app

Adobe Creative Suite 2
Bridge JavaScript Reference ExtendScript Tools and Features 225

The globally available 1ocalize function can be used to provide localized strings anywhere a displayed
text value is specified.

localize Returns the localized string for the current locale.

localize (localization objl[, args])
localize (ZString)

localization_obj A JavaScript object literal whose property names are locale names, and whose
property values are the localized text strings. The locale name is an identifier as
specified in the ISO 3166 standard, a set of two-letter language abbreviations,
such as "en" for English and "de" for German.

For example:
btnText = { en: "Yes", de: "Ja", fr: "Oui" };
bl = w.add ("button", undefined, localize (btnText)) ;
The string value of each property can contain variables in the form 21, %2, and

so on, corresponding to additional arguments. The variable is replaced with
the result of evaluating the corresponding argument in the returned string.

args Optional. Additional JavaScript expressions matching variables in the string
values supplied in the localization object. The first argument corresponds to
the variable %1, the second to 2, and so on.

Each expression is evaluated and the result inserted in the variable’s position in
the returned string.

» Example

today = {
en: "Today is %1/%2",
de: "Heute ist der %2.%1."
Yi
d = new Date() ;
alert (localize (today, d.getMonth()+1, d.getDate()));

ZString Internal use only. A ZString is an internal Adobe format for localized strings,
which you might see in Adobe scripts. It is a string that begins with $$$ and
contains a path to the localized string in an installed ZString dictionary. For
example:

w = new Window ("dialog", localize ("$$$/UI/titlel=Sample"));

Adobe Creative Suite 2
Bridge JavaScript Reference ExtendScript Tools and Features 226

ExtendScript provides a set of globally available functions that allow you to display short messages to the
user in platform-standard dialog boxes. There are three types of message dialogs:

e Alert: Displays a dialog containing a short message and an OK button.

e Confirm: Displays a dialog containing a short message and two buttons, Yes and No, allowing the user
to accept or reject an action.

e Prompt: Displays a dialog containing a short message, a text entry field, and OK and Cancel buttons,
allowing the user to supply a value to the script.

These dialogs are customizable to a small degree. The appearance is platform specific.

alert Displays a platform-standard dialog containing a short
alert (messagel, title, errorIcon]); messageand an OK button. Returns undefined.

message The string for the displayed message.

title Optional. A string to appear as the title of the dialog, if the platform supports

a title. Mac OS does not support titles for alert dialogs. The default title string
is "Script Alert".

errorIcon Optional. When true, the platform-standard alert icon is replaced by the
platform-standard error icon in the dialog. Default is false.

» Examples

This figure shows simple alert dialogs in Windows and Mac OS.

Script Alert Title

i Header i Header Header
Message Message
; ’ Message

This figure shows alert dialogs with error icons.

Title

Header Header
Message Message

Bridge JavaScript Reference

Adobe Creative Suite 2
ExtendScript Tools and Features 227

confirm Displays a platform-standard dialog containing a short
confirm (messagel,noAsDf1t ,title 1); message and two buttons labeled Yes and No. Returns
true if the user clicked Yes, false if the user clicked No.
message The string for the displayed message.
noAsDf1t Optional. When true, the No button is the default choice, selected when the
user types ENTER. Default is false, meaning that Yes is the default choice.
title Optional. A string to appear as the title of the dialog, if the platform supports
a title. Mac OS does not support titles for confirmation dialogs. The default
title string is "Script Alert".
» Examples

This figure shows simple confirmation dialogs in Windows and Mac OS.

'script Alert
2 Header
) Message

Header

Message

&

(" No)(——Ves—a

This figure shows confirmation dialogs with No as the default button.

| script Alert
2 Header Header
e st i Message
Yes —— %
[Yes) (No }
prompt Displays a platform-standard dialog containing a short
prompt (message, preset[, title 1); message, a text edit field, and two buttons labeled OK and
Cancel. Returns the value of the text edit field if the user
clicked OK, nu11 if the user clicked Cancel.
message The string for the displayed message.
preset The initial value to be displayed in the text edit field.
title

Optional. A string to appear as the title of the dialog. In Windows, this
appears in the window’s frame, while in Mac OS it appears above the
message. The default title string is "Script Prompt".

Adobe Creative Suite 2
Bridge JavaScript Reference ExtendScript Tools and Features 228

» Examples

This figure shows simple prompt dialogs in Windows and Mac OS.

rScrlptPrumpt %

Script Prompt
e Header
@ Mezsage & Message
S —
Cancel |

12345 |

(Cancel) f—-ﬁﬂ—)

|1234ﬂ

This figure shows confirmation dialogs with a t it 1e value specified.

f—

Title

Title
i ot Header
@ Mezsage s Message
. =i
Zancel |
12345 i

l: Cancel) (—-@&%

|I234ﬂ

Bridge JavaScript Reference

Adobe Creative Suite 2

ExtendScript Tools and Features

229

ExtendScript provides the UnitValue Object to represent measurement values. The properties and
methods of the Unitvalue object make it easy to change the value, the unit, or both, or to perform
conversions from one unit to another.

Represents measurement values that contain both the numeric magnitude and the unit of measurement.

The UnitValue constructor creates a new UnitValue object. The keyword new is optional:

myVal
myVal
myVal

The value is a number, and the unit is specified with a string in abbreviated, singular, or plural form, as

new UnitValue (value, unit);
new UnitValue ("value unit") ;
new UnitValue (value, "unit");

shown in the following table.

Abbreviation | Singular Plural Comments

in inch inches 254 cm

ft foot feet 30.48 cm

yd yard yards 91.44 cm

mi mile miles 1609.344 m

mm millimeter millimeters

cm centimeter centimeters

m meter meters

km kilometer kilometers

pt point points inches /72

pc pica picas points * 12

tpt traditional point traditional points inches/72.27

tpc traditional pica traditional picas 12 tpt

Ci cicero ciceros 12.7872 pt

px pixel pixels baseless (see below)
% percent percent baseless (see below)

If an unknown unit type is supplied, the type is set to " ? ", and the UnitValue object prints as "UnitValue

0.00000".

For example, all of the following formats are equivalent:

myVal = new UnitValue (12, "cm");

Adobe Creative Suite 2

Bridge JavaScript Reference ExtendScript Tools and Features 230

myVal = new UnitValue ("12 cm");
myVal UnitValue ("12 centimeters") ;

baseUnit UnitValue | A UnitValue Object that defines the size of one pixel, or a total size to use as
a base for percentage values. This is used as the base conversion unit for
pixels and percentages; see Converting pixel and percentage values.

Default is 0.013889 inches (1/72 in), which is the base conversion unit for
pixels at 72 dpi. Set to null to restore the default.

type String The unit type in abbreviated form; for example, "cm" or "in".
value Number The numeric measurement value.
as Returns the numeric value of this object in the given unit.

unitvaluedbj.as (unit) If the unit is unknown or cannot be computed, generates a run-time

error.
unit The unit type in abbreviated form; for example, "cm" or "in".
convert Converts this object to the given unit, resetting the type and value

unitValueObj.convert (unit) | accordingly. Returns true if the conversion is successful. If the unit is
unknown or the object cannot be converted, generates a run-time
error and returns false.

unit The unit type in abbreviated form; for example, "cm" or "in".

Converting measurements among different units requires a common base unit. For example, for length,
the meter is the base unit. All length units can be converted into meters, which makes it possible to
convert any length unit into any other length unit.

Pixels and percentages do not have a standard common base unit. Pixel measurements are relative to
display resolution, and percentages are relative to an absolute total size.

e To convert pixels into length units, you must know the size of a single pixel. The size of a pixel depends
on the display resolution. A common resolution measurement is 72 dpi, which means that there are 72
pixels to the inch. The conversion base for pixels at 72 dpi is 0.013889 inches (1/72 inch).

e Percentage values are relative to a total measurement. For example, 10% of 100 inches is 10 inches,
while 10% of 1 meter is 0.1 meters. The conversion base of a percentage is the unit value
corresponding to 100%.

The default baseUnit of a unitvalue objectis 0.013889 inches, the base for pixels at 72 dpi. If the
unitvValue is for pixels at any other dpi, or for a percentage value, you must set the baseUnit value
accordingly. The baseUnit value is itself a unitvalue object, containing both a magnitude and a unit.

Adobe Creative Suite 2
Bridge JavaScript Reference ExtendScript Tools and Features 231

For a system using a different dpi, you can change the baseUnit value in the UnitValue class, thus
changing the default for all new unitvalue objects. For example, to double the resolution of pixels:

UnitValue.baseUnit = UnitValue (1/144, "in"); //144 dpi

To restore the default, assign null to the class property:

UnitValue.baseUnit = null; //restore default
You can override the default value for any particular unitvalue object by setting the property in that
object. For example, to create a unitValue object for pixels with 96 dpi:

pixels = UnitValue (10, "px");
myPixBase = UnitValue (1/96, "in");
pixels.baseUnit = myPixBase;

For percentage measurements, set the baseUnit property to the measurement value for 100%. For
example, to create a unitValue object for 40 % of 10 feet:

myPctVal = UnitValue (40, "%");
myBase = UnitValue (10, "ft")
myPctVal.baseUnit = myBase;

Use the as method to get to a percentage value as a unit value:

myFootVal = myPctVal.as ("ft"); // => 4
myInchval = myPctVal.as ("in"); // => 36

You can convert a unitvalue from an absolute measurement to pixels or percents in the same way:

myMeterVal = UnitValue (10, "m"); // 10 meters
myBase = UnitValue (1, "km");
myMeterVal .baseUnit = myBase; //as a percentage of 1 kilometer

pctOfKm = myMeterVal.as ('$'); // => 1

myVal = UnitValue ("1 in"); // Define measurement in inches
// convert to pixels using default base

myVal.convert ("px"); // => value=72 type=px

UnitValue objects can be used in computational JavaScript expressions. The way the value is used
depends on the type of operator.

e Unary operators (~, !, +, -)

~unitvValue The numeric value is converted to a 32-bit integer with inverted bits.
lunitValue Result is true if the numeric value is nonzero, falseifitis not.
+unitValue Result is the numeric value.

-unitValue Result is the negated numeric value.

Adobe Creative Suite 2
Bridge JavaScript Reference ExtendScript Tools and Features 232

e Binary operators (+, -, *, /, %)

If one operand is unitVvalue object and the other is a number, the operation is applied to the number
and the numeric value of the object. The expression returns a new unitValue object with the result
as its value. For example:

val = new UnitValue ("10 cm") ;
res = val * 20;
// res is a UnitValue (200, "cm") ;

If both operands are unitVvalue objects, JavaScript converts the right operand to the same unit as the
left operand and applies the operation to the resulting values. The expression returns a new unitvalue
object with the unit of the left operand, and the result value. For example:

a = new UnitValue ("1 m");

b = new UnitValue ("10 cm") ;

a + b;

// res is a UnitvValue (1.1, "m");
b + a;

// res is a UnitValue (110, "cm") ;

e Comparisons (=, ==, <, >, <=, >=)

If one operand is a unitValue object and the other is a number, JavaScript compares the number
with the unitvalue's numeric value.

If both operands are unitValue objects, JavaScript converts both objects to the same unit, and
compares the converted numeric values.

For example:

new UnitValue ("98 cm") ;
new UnitValue ("1 m") ;
b; // => true

1; // => false

== 98; // => true

Q0 0 0T 9
AN

Bridge JavaScript Reference

Adobe Creative Suite 2
ExtendScript Tools and Features 233

ExtendScript provides support for a modular approach to scripting by allowing you to include one scriptin
another as a resource, and allowing a script to export definitions that can be imported and used in another

script.

ExtendScript provides preprocessor directives for including external scripts, naming scripts, specifying an
ExtendScript engine, and setting certain flags. You can specify these in two ways:

e With a C-style statement starting with the # character:

#include "file.jsxinc"

e Inacomment whose text starts with the @ character:

// @include "file.jsxinc"

When a directive takes one or more arguments, and an argument contains any nonalphanumeric
characters, the argument must be enclosed in single or double quotes. This is generally the case with
paths and file names, for example, which contain dots and slashes.

#engine name

#include file

Identifies the ExtendScript engine that runs this script. This allows other
engines to refer to the scripts in this engine by importing the exported
functions and variables. See Importing and exporting between scripts.

Use JavaScript identifier syntax for the name. Enclosing quotes are optional.
For example:

#engine library
#engine "$1ib"

Includes a JavaScript source file from another location. Inserts the contents
of the named file into this file at the location of this statement. The file
argument is an Adobe portable file specification. See Specifying Paths.

As a convention, use the file extension .jsxinc for JavaScript include files.
For example:

#include "../include/lib.jsxinc"
To set one or more paths for the #include statement to scan, use the
#includepath preprocessor directive.

If the file to be included cannot be found, ExtendScript throws a run-time
error.

Included source code is not shown in the debugger, so you cannot set
breakpoints in it.

Bridge JavaScript Reference

Adobe Creative Suite 2
ExtendScript Tools and Features 234

#includepath path

#script name

#strict on

#itarget name

One or more paths that the #include statement should use to locate the
files to be included. The semicolon (;) separates path names.

If a #include file name starts with a slash (/), it is an absolute path name,
and the include paths are ignored. Otherwise, ExtendScript attempts to find
the file by prefixing the file with each path set by the #includepath
statement.

For example:

#includepath "include;../include"

#include "file.jsxinc"
Multiple #includepath statements are allowed; the list of paths changes
each time an #includepath statement is executed.

As a fallback, ExtendScript also uses the contents of the environment
variable JsINCLUDE as a list of include paths.

Some engines can have a predefined set of include paths. If so, the path
provided by #includepath is tried before the predefined paths. If, for
example, the engine has a predefined path set to predef; predef/include,
the preceding example causes the following lookup sequence:

file.jsxinc: literal lookup

include/file.jsxinc: first #includepath path
../include/file.jsxinc: second #includepath path
predef/file.jsxinc: first predefined engine path
predef/include/file.jsxinc: second predefined engine path

Names a script. Enclosing quotes are optional, but required for names that
include spaces or special characters. For example:

#script SetupPalette

#script "Load image file"

The name value is displayed in the Toolkit Editor tab. An unnamed script is
assigned a unique name generated from a number.

Turns on strict error checking. See the Dollar ($) Object’s strict property.

Defines the target application of this JSX file. The name value is an
application specifier; see Application and Namespace Specifiers. Enclosing
quotes are optional.

If the Toolkit is registered as the handler for files with the .jsx extension (as
it is by default), opening the file opens the target application to run the
script. If this directive is not present, the Toolkit loads and displays the
script. A user can open a file by double-clicking it in a file browser, and a
script can open a file using a File object’s execute method.

The ExtendScript JavaScript language has been extended to support function calls and variable access
across various source code modules and ExtendScript engines. A script can use the export statement to
make its definitions available to other scripts, which use the import statement to access those

definitions.

To use this feature, the exporting script must name its ExtendScript engine using the #engine
preprocessor statement. The name must follow JavaScript naming syntax; it cannot be an expression.

Adobe Creative Suite 2
Bridge JavaScript Reference ExtendScript Tools and Features 235

For example, the following script could serve as a library or resource file. It defines and exports a constant
and a function:

#engine library
export random, libVersion;
const libVersion = "Library 1.0";
function random (max)
return Math.floor (Math.random() * max) ;
}

A script running in a different engine can import the exported elements. The import statement identifies
the resource script that exported the variables using the engine name:

import library.random, library.libVersion;

print (random (100)) ;
You can use the asterisk wildcard (*) to import all symbols exported by a library:

import library.*
Objects cannot be transferred between engines. You cannot retrieve or store objects, and you cannot call
functions with objects as arguments. However, you can use the JavaScript toSource function to serialize
objects into strings before passing them. You can then use the JavaScript eval function to reconstruct the
object from the string.
For example, this function takes as its argument a serialized string and constructs an object from it:

function myFn (serialized) {
var obj = eval (serialized);
// continue working..

}

In calling the function, you deconstruct the object you want to pass into a serialized string:

myFn (myObject.toSource()); // pass a serialized object

Adobe Creative Suite 2
Bridge JavaScript Reference ExtendScript Tools and Features 236

ExtendScript allows you to extend or override the behavior of a math or a Boolean operator for a specific
class by defining a method in that class with same name as the operator. For example, this code defines
the addition (+) operator for the class MyClass. In this case, the addition operator simply adds the
operand to the property value:

// define the constructor method

function MyClass (initialvalue) {
this.value = initialValue;

}

// define the addition operator

MyClass.prototype ["+"] = function (operand) {
return this.value + operand;

}

This allows you to perform the "+" operation with any object of this class:

var obj = new MyClass (5);
Result: [object Object]
obj + 10;

Result: 15

You can override the following operators:

Unary +, -

Binary +, -

e The operators > and >= are implemented by executing NOT operator <= and NOT operator <.

e Combined assignment operators such as *= are not supported.

All operator overload implementations must return the result of the operation. To perform the default
operation, return undefined.

Unary operator functions work on the this object, while binary operators work on the this object and
the first argument. The + and - operators have both unary and binary implementations. If the first
argument is undefined, the operator is unary; if it is supplied, the operator is binary.

For binary operators, a second argument indicates the order of operands. For noncommutative operators,
either implement both order variants in your function or return unde f ined for combinations that you do
not support. For example:

this ["/"] = function (operand, rev) ({
if (rev) {
// do not resolve operand / this
return;
} else {
// resolve this / operand
return this.value / operand;

Adobe Creative Suite 2
Bridge JavaScript Reference ExtendScript Tools and Features 237

All forms of interapplication communication use Application specifiers to identify Adobe applications.

e Inall ExtendScript scripts, the #target directive can use an specifier to identify the application that
should run that script. See Preprocessor directives.

e Ininterapplication messages, the specifier is used as the value of the target property of the message
object, to identify the target application for the message.

e Bridge (which is integrated with all Adobe Creative Suite 2 applications) uses an application specifier as
the value of the document . owner property, to identify another Creative Suite 2 application that
created or opened a Bridge browser window. For details, see the Document Object.

When a script for one application invokes Cross-DOM or exported functions, it identifies the exporting
application using Namespace specifiers.

Application specifiers are strings that encode the application name, a version number and a language
code. They take the following form:

appname [-version[-locale]]

appname An Adobe application name. One of:

acrobat
aftereffects
atmosphere
audition
bridge
encore
golive
illustrator
incopy
indesign
photoshop
premiere

version Optional. A number indicating at least a major version. If not supplied, the most
recent version is assumed. The number can include a minor version separated from
the major version number by a dot; for example, 1. 5.

locale Optional. An Adobe locale code, consisting of a 2-letter ISO-639 language code and
an optional 2-letter ISO 3166 country code separated by an underscore. Case is
significant. For example, en_us, en_UK, ja_JB de_DF, fr_FR.

If not supplied, ExtendScript uses the current platform locale.

Do not specify a locale for a multilingual application, such as Bridge, that has all
locale versions included in a single installation.

The following are examples of legal specifiers:

photoshop
bridge-1
bridge-1.0
illustrator-12.2
bridge-1-en us
golive-8-de de

Adobe Creative Suite 2
Bridge JavaScript Reference ExtendScript Tools and Features 238

When calling cross-DOM and exported functions from other applications, a namespace specifier qualifies
the function call, directing it to the appropriate application.

Namespace specifiers consist of an application name, as used in an application specifier, with an optional
major version number. Use it as a prefix to an exported function name, with the JavaScript dot notation.

appname [majorVersion] . functionName (args)

For example:

e To call the cross-DOM function quit in Photoshop CS2, use photoshop.quit (),and to call itin
GolLive CS2,use golive.quit ().

e To call the exported function place, defined for lllustrator CS version 12, call
illustratorl2.place (myFiles).

For information about the cross-DOM and exported functions, see Interapplication Communication with
Scripts.

On startup, all Adobe Creative Suite 2 applications execute all JSX files that they find in the user startup
folder:

e In Windows, the startup folder is:
$APPDATA%\Adobe\StartupScripts
e In Mac OS, the startup folder is
~/Library/Application Support/Adobe/StartupScripts/
A script in the startup directory is executed on startup by all applications. If you place a script here, it must

contain code to check whether it is being run by the intended application. You can do this using the
appName static property of the BridgeTalk class. For example:

if (BridgeTalk.appName == "bridge") ({
//continue executing script
}

In addition, individual applications may look for application-specific scripts in a subfolder named with that
application’s specifier and version, in the form:

$APPDATA% \Adobe\StartupScripts\appname\version
~/Library/Application Support/Adobe/StartupScripts/appname/version/

The name and version in these folder names are specified in the form required for Application specifiers.
For example, in Windows, GoLive CS2 version 8.2 would look for scripts in the directory:

$APPDATA% \Adobe\StartupScripts\golive\s8.2

The version portion of the Bridge-specific folder path is an exact version number. That is, scripts in the
folderbridge/1.5 are executed only by Bridge version 1.5, and so on.

Individual applications may also implement a path in the installation directory for application-specific
startup scripts. For example:

IllustratorCS2 install dir\Startup Scripts

Adobe Creative Suite 2
Bridge JavaScript Reference ExtendScript Tools and Features 239

IllustratorCS2 install dir/Startup Scripts/

If a script that is run by one application will communicate with another application, or add functionality
that depends on another application, it must first check whether that application and version is installed.
You can do this using the BridgeTalk.getSpecifier static function. For example:

if (BridgeTalk.appName == "bridge") {
// Check that PS CS2 is installed
if (BridgeTalk.getSpecifier ("photoshop”,9)) {
// add PS automate menu to Bridge UI
}

}

For details of interapplication communication, see Interapplication Communication with Scripts.

Index

A
absolute pathnames 56
Adobe Bridge
document object model (DOM) 23
events 31
global information 94
quitting programmatically 97
Ul elements 28
windows 24
alerts 69, 147,226
aliases, referencing 59
application
message framework 184, 193
preferences 110, 119, 122
specifiers 237
application object
about 24
registering event handlers 32
applications
accessing from other applications 194
as script execution targets 234
calling exported functions 238
communication between 180, 237
debugging 205
launching to open files 127
arrays, passing between engines 51
automatic layout of Ul controls 75, 168

backslashes in pathnames 57
breakpoints 212
Bridge, See Adobe Bridge
BridgeTalk object
See also interapplication communication
global values for messaging framework 193
message objects 197
browse schemes
defining and registering 36, 97
predefined and script-defined 36, 123
browser window
as document object 23, 100
opening 95
panels 25
parts 28
button objects 66, 154

C

call stack for execution 208

callback and execJS interaction 53

callbacks
defining for HTML scripts in Content pane 100
defining for HTML scripts in dialogs 99

defining for HTML scripts in nav bars 116

defining for remote calls between HTML scripts and Bridge 42

executing 104, 118
scheduling execution of remote function 97
character encoding 59
checkbox objects 67,154
command line
for JavaScript 207
for platform 97
commands
adding to menus 169
identifiers 173
confirmation dialogs 69, 147, 226
console 207
containers for Ul controls 65
Content pane
about 29
how thumbnails are displayed 36, 123
using to display a user interface 39, 50
context menus 30
control types for ScriptUl windows 65
cross-DOM
about 181
function reference 181
specifying application 238

D
data
passing between applications 190
passing between engines 42, 51
tracking while debugging 206
debugging
call stack 208
in ExtendScript Toolkit 210
optimization tools 213
selecting target application 205
setting breakpoints 212
debugging tools
Dollar ($) object 215
ExtendScript Toolkit 203
Reflection object 219
dialogs
about 26,39
callbacks and remote function execution 44
closing 44
creating with ScriptUl 61
displaying HTML controls 44, 98
displaying ScriptUl 40
modal and modeless
HTML 44
ScriptUl 61,69
predefined 147
Preferences 110,119, 122

240

Bridge JavaScript Reference

Adobe Creative Suite 2

Index

241

directories, referencing 138
directory specifications 56
displaying a user interface for a script 38
document object 100
document object model (DOM) 23
documents

about 23

and the application object 94

opening 95

user interaction events 108
Dollar ($) object 215
drives, specifying in paths 58
dropdownlist objects 68, 155

E

edittext objects 66, 155
embedded browser for displaying HTML in Bridge 42
encoding 59
engine ExtendScript directive 233
engines, JavaScript 42,205
error handling
filesystem 60, 143
messaging framework 201
setting strict 234
event handling
Bridge events 31
defining handlers 31
event object argument to handlers 106
registering handlers 32
user interface events 35
events
about 27
event objects passed to handlers 106
global 107
in Browser window 108
in Preferences dialog 110, 122
in ScriptUl windows 73
in thumbnails 109
exchanging data between engines 42, 51
executing JavaScript
about 22,238
in ExtendScript Toolkit 203,210
executing remote functions
scheduling from callback 53
with execJS 43
execution call stack 208
exiting the Bridge application 97
exported functions
about 180
specifying application 238
exporting and importing scripts 234
ExtendScript
command line 207
Dollar ($) object 215
engines 233
multiple engines 205
operator overloading 236
preprocessor directives 233
Reflection object 219

ScriptUl module 61, 146
ExtendScript Toolkit 203

configuring window 204

debugging 210

editing scripts 209

optimization tools 213

setting breakpoints 212

F

Favorites pane
about 28
adding nodes 36
object 111
File object 129
files
distinguishing from folders 56
loading local copies of VersionCue references 96
metadata 113
name and path specifications 56
opening from thumbnail object 127
files and folders
how they are displayed in Content pane 36, 123
platform-independent reference objects 56
filesystem
aliases 59
error handling 60, 143
object references 56, 129
filtering web pages 103
flyout menus 30
Folder object 138
Folders pane 29
frames for Ul controls 62, 65
functions
call stack for debugging 208
calling in other applications 180
cross-DOM 181
global 95
operating system 97

G
global application events 107
global dialogs 69, 147, 226
global functions 95
global information 24, 94
global localize function 225
global object 215
Golive

more information 21
grouping controls 65, 156

H

handlers

for Bridge events 31

for ScriptUl events 73

registering 32
HTML pages, displaying in Content pane 100, 125
HTML script functions, executing remotely 43
HTML user interfaces

Bridge JavaScript Reference

Adobe Creative Suite 2

Index

242

about 38,42

callbacks for remote calls between HTML scripts and Bridge 42

displaying in Content pane 50

displaying in dialogs 98

displaying in nav bar 47

running in browser and Bridge engines 42

I/0, unicode 59
iconbutton objects 66, 156
icons, displaying in ScriptUl windows 68
image file metadata 113
image objects 67, 156
importing and exporting scripts 234
include ExtendScript directive 233
includepath ExtendScript directive 234
interaction with users 26
interapplication communication

about 23,180, 237

checking application installation 194, 239

cross-DOM functions 181

message objects 197

messaging 184, 193

specifying target applications 238
internationalization

ExtendScript utilities 222

in ScriptUl windows 91
item objects 68, 156

J

JavaScript
console 207
debugging 203
editing scripts 209
engines 233
more information 21
multiple engines 205
sending to other applications 184
JavaScript engines for web browser and Bridge 42

K
Keywords pane 29

L

labels, thumbnail 126
layout of user interface controls 62,75, 168
layout properties in ScriptUl windows 76
listbox objects 68, 157
listitem objects 68
local copies of referenced VersionCue files 96
locale identifiers 223
localization
ExtendScript utilities 222
in ScriptUl windows 91
localize function 225
locations of startup scripts 22,238

M

main window
as document object 23
opening 95
parts 28
measurement values 229
menu element objects 169
menu items, See commands
menubar
about 30
extending 169
menus
about 27
context and flyout 30
extending 169
identifiers 172
messages
handling responses 187
passing data 190
receiving 186
responding to 186
sending 184
messaging
about 180
error handling 201
framework 184, 193
global values in BridgeTalk object 193
message objects 197
specifying applications 237
metadata
display 29
example of access through HTML Ul 50
object 113
modal and modeless dialogs
HTML 44
ScriptUl 61,69

N

namespaces
for external functions 180
global 215

specifiers for interapplication communication 238
naming scripts 234
navigation bars
about 26,38
accessing 101
displaying HTML 47
displaying ScriptUl 40
executing remote functions in 48
object 116
using callbacks 47
nodes
about 123
accessing 125
notifications 226

(o)

object model
application and document 24

Bridge JavaScript Reference

Adobe Creative Suite 2

Index

243

correspondance to Bridge Ul 28
thumbnails 25
objects
about the object model 23
application 94
creation properties 64
document 100
file and folder reference 56, 129, 138
global object 215
menus and commands 169
message 197
navigation bars 116
passing between engines 51
preferences 119, 122
retrieving information about 219
thumbnail 123
user interface 61, 146
user interface controls 154
windows 147
operating system, access to commands 97
operator overloading in ExtendScript 236
optimization tools 213

P

palettes 61
panel objects 62, 65, 157
passing values between engines 42, 51
path specifications 56
pathnames

separator characters 57

special characters 57
placing windows and controls 166
platform commands 97
platform-independent paths 56
portability of file references 59
preferences

about 27

dialog object 122

events 110

object 119
Preview pane 29
profiling for script optimization 213
progressbar objects 67, 157
prompts 69, 148, 226

Q

quitting the Bridge application 97

R

radiobutton objects 67, 158

redirecting URLs 103

Reflection object 219

relative pathnames 56

remote function execution 43

resource strings for ScriptUl elements 71
responding to user input 38

responding to user interaction with Bridge 35, 106

S

scheduling execution after return from callback 97
scheduling tasks 53
script execution, setting target application 234
script ExtendScript directive 234
scripting overview 22
scripts
access to Bridge window 28
checking application installation 194, 239
command line 207
debugging 203
editing in ExtendScript Toolkit 209
executing 22,238
importing and exporting definitions 234
including in other scripts 233
naming 234
output 207
sending to other applications 184
startup 22,238
user interface options 38
ScriptUl
about 61
control types 65
in Bridge windows 40
layout properties 76
object reference 146
programming model 61
resource strings 71
responding to user interaction 73
usage in Bridge 38
scrollbar objects 68, 158
sizing and placing windows and controls 166
slashes in pathnames 57
slider objects 67, 159
soliciting user input 38
special characters in pathnames 57
startup script locations 22,238
statictext objects 66, 159
status line 30
strict ExtendScript directive 234
string translation
ExtendScript utilities 222
in ScriptUl windows 91

T

target ExtendScript directive 234
targets
message 237
script execution 234
selecting application for debugging 205
tasks, scheduling 53, 97
testing
in ExtendScript Toolkit 210
scripts 203
thumbnails
about 25
adding to Favorites 36, 111
deselecting 104
display style 101

Bridge JavaScript Reference

Adobe Creative Suite 2

Index

244

displaying web pages for 125

events 109

labels 126

metadata 113

navigating to 102

object 123

selecting 105

sorting 102
Toolkit, ExtendScript 203
translation of Ul strings 91,222

V)
unicode I/0 59
units of measurement 229
UnitValue object 229
URI notation 56
URLs, filtering and redirecting 103
user interaction
Bridge events 106
ScriptUl events and handlers 73
user interface controls 154
accessing 64
adding 63
automatic layout 168
creation properties 64
dialogs for HTML 98
grouping 62, 65
methods 164
placing 166
properties 160
removing 65
responding to user interaction 165
size and location 62
types 65
user interface elements 61, 146
user interface options
about 26,38

HTML dialogs 98
navigation bars 116
ScriptUl dialogs 40
user prompts 69, 148, 226
user-interaction events 27,35

Vv

variable values during execution 206
VersionCue, loading local copies of referenced files 96
volumes, specifying in paths 58

w

web browser, embedded 42
web pages
Content pane display properties 100, 125
filtering and redirecting 103
how they are displayed in Content pane 36, 123
Window class 147
windows
accessing child controls 64
adding controls 151
automatic layout 75
controlling 149
creating 61, 148
creation properties 64
grouping controls 62, 150
layout 62
opening browsers 95
placing 166
removing child controls 65
responding to user interaction 152
reusing 147
script access to 24,28

X
XMP metadata 113

	Contents
	Welcome
	About This Book
	Who should read this book
	What is in this book
	Document conventions
	Typographical conventions
	JavaScript conventions

	Where to go for more information

	Scripting Bridge
	Scripting Overview
	Executing Scripts
	Communicating with Other Applications

	The Bridge Document Object Model
	The application and documents
	Thumbnails in documents
	Thumbnails as node references
	Using and accessing thumbnails

	User interface objects
	Navigation bars
	Dialogs
	Menus

	Events
	Application preferences

	The Bridge DOM and the Bridge Browser Window

	Event Handling and Script-Defined Browse Schemes
	Event Handling in Bridge
	Defining event handlers
	Registering event handlers
	Event handling examples
	User-interface events

	Script-Defined Browse Schemes
	Defining and registering a browse scheme

	Creating a User Interface
	User Interface Options for Scripts
	Navigation Bars
	Dialogs Boxes
	Content Pane

	ScriptUI User Interfaces
	Displaying ScriptUI Dialogs
	Displaying ScriptUI elements in a navigation bar

	Displaying HTML in Bridge
	Defining callbacks for HTML scripts
	Executing script functions defined on HTML UI pages

	Displaying HTML in Bridge Dialogs
	Communicating with Bridge from dialog JavaScript
	Using callbacks in an HTML dialog
	Calling functions defined in an HTML dialog

	Displaying HTML in a Navigation Bar
	Using callbacks from an HTML navigation bar
	Calling functions defined in an HTML navigation bar

	Displaying HTML in the Content Pane
	Callback example: Requesting specific metadata value for a file

	Passing Complex Values in Remote Calls
	Passing an object from Bridge to HTML/JavaScript

	Scheduling tasks from callbacks
	Scheduling a remote function execution

	Using File and Folder Objects
	Overview
	Specifying Paths
	Absolute and relative path names
	Character interpretation in paths
	The home directory
	Volume and drive names
	Mac OS volumes
	Windows drives

	Aliases
	Portability issues

	Unicode I/O
	File Error Handling

	Using ScriptUI
	Overview
	ScriptUI Programming Model
	Creating a window
	Container elements
	Window layout
	Adding elements to containers
	Creation properties
	Accessing child elements

	Removing elements
	Types of controls
	Containers
	Panel
	Group

	User interface controls
	StaticText
	EditText
	Button
	IconButton
	Image
	Checkbox
	RadioButton
	Progressbar
	Slider
	Scrollbar
	ListBox
	DropDownList
	ListItem

	Displaying icons
	Prompts and alerts
	Modal dialogs
	Creating and using modal dialogs
	Dismissing a modal dialog
	Default and cancel elements

	Resource Specifications
	Defining Behavior for Controls with Event Callbacks
	Defining event handler functions
	Simulating user events

	Automatic Layout
	Default layout behavior
	Automatic layout properties
	Container orientation
	Aligning children
	Setting margins
	Spacing between children
	Determining a preferred size
	Creating more complex arrangements
	Creating dynamic content

	Custom layout manager example
	The AutoLayoutManager algorithm
	Automatic layout restrictions

	Example scripts
	Alert box builder
	Resource specification example

	Localization in ScriptUI Objects
	Variable values in localized strings
	Enabling automatic localization

	Bridge DOM Object Reference
	App Object
	App object properties
	displayDialogs
	document
	documents
	eventHandlers
	favorites
	language
	locale
	name
	preferences
	version

	App object functions
	beep
	browseTo
	buildFolderCache
	cancelTask
	hide
	preflightFiles
	purgeAllCaches
	purgeFolderCache
	quit
	registerBrowseScheme
	scheduleTask
	system

	Dialog Object
	Dialog object constructor
	Dialog object properties
	active
	closing
	height
	modal
	title
	width

	Dialog object functions
	center
	close
	execJS
	open
	place
	print

	Document Object
	Document object properties
	allowDrags
	contentPaneMode
	context
	id
	jsFuncs
	maximized
	minimized
	navbars
	noItems
	owner
	previewLooping
	selections
	showThumbnailName
	sorts
	status
	thumbnail
	thumbnailViewMode
	visible
	visibleThumbnails
	visitUrl

	Document object functions
	bringToFront
	close
	deselect
	deselectAll
	execJS
	maximize
	minimize
	refresh
	resetToDefaultWorkspace
	restore
	reveal
	select
	selectAll

	Event Object
	Event object properties
	appPath
	document
	favorites
	isContext
	location
	object
	type
	url
	where

	Event Object Types
	App events
	close
	destroy

	Document events
	complete
	create
	deselect
	destroy
	empty
	failed
	loaded
	loading
	open
	select
	stopped
	uploading

	Thumbnail events
	add
	deselect
	hover
	modify
	move
	open
	openWith
	preview
	remove
	select

	PreferencesDialog events
	cancel
	create
	destroy
	ok

	Favorites Object
	Favorites object properties
	length
	section

	Favorites object functions
	addChild
	clearAll
	insert
	remove

	Metadata Object
	Metadata object properties
	Label
	namespace
	xmpPropertyName
	Examples

	Metadata object functions
	applyMetadataTemplate

	NavBar Object
	NavBar object properties
	file
	height
	jsFuncs
	type
	visible

	NavBar object functions
	add
	execJS
	print

	Preferences Object
	Preferences object properties
	extraMetadata
	showName
	BackgroundColor
	FileSize
	HideEmptyFields
	Label1
	Label2
	Label3
	Label4
	Label5
	Language
	MRUCount
	ShowLabels
	ShowName
	UseLocalCaches
	anyPropertyName

	Preferences object functions
	clear

	PreferencesDialog Object
	PreferencesDialog object functions
	addPanel
	close

	Thumbnail Object
	Thumbnail object constructor
	Node specifiers
	Multiple references to the same node

	Thumbnail object properties
	aliasType
	children
	container
	creationDate
	displayMode
	displayPath
	hidden
	lastModifiedDate
	location
	metadata
	mimeType
	name
	parent
	path
	spec
	synchronousMetadata
	type

	Thumbnail object functions
	copyTo
	moveTo
	open
	openWith
	refresh
	remove
	resolve

	File and Folder Object Reference
	Overview
	File Object
	File object constructors
	File class properties
	fs

	File class functions
	decode
	encode
	isEncodingAvailable
	openDialog
	saveDialog

	File object properties
	absoluteURI
	alias
	created
	creator
	encoding
	eof
	error
	exists
	fsName
	hidden
	length
	lineFeed
	modified
	name
	parent
	path
	readonly
	relativeURI
	type

	File object functions
	close
	copy
	createAlias
	execute
	getRelativeURI
	open
	openDlg
	read
	readch
	readln
	remove
	rename
	resolve
	saveDlg
	seek
	tell
	write
	writeln

	Folder Object
	Folder object constructors
	Folder class properties
	appData
	commonFiles
	current
	fs
	myDocuments
	startup
	system
	temp
	trash
	userData

	Folder class functions
	decode
	encode
	isEncodingAvailable
	selectDialog

	Folder object properties
	absoluteURI
	alias
	created
	error
	exists
	fsName
	modified
	name
	parent
	path
	relativeURI

	Folder object functions
	create
	execute
	getFiles
	getRelativeURI
	remove
	rename
	resolve
	selectDlg

	File and Folder Error Messages
	File and Folder Supported Encoding Names
	Additional encodings

	ScriptUI Object Reference
	Overview
	Window Class
	Window class properties
	coreVersion
	version

	Window class functions
	alert
	confirm
	find
	getResourceText
	prompt

	Window Object
	Window object constructor
	Window object properties
	defaultElement
	cancelElement
	frameBounds
	frameLocation
	frameSize

	Container properties
	alignChildren
	children
	layout
	margins
	orientation
	spacing

	Window object functions
	add
	center
	close
	hide
	notify
	remove
	show

	Window event-handling callbacks
	onClose
	onMove
	onMoving
	onResize
	onResizing
	onShow

	Control Objects
	Control object constructors
	add
	Control types and creation parameters
	button
	checkbox
	dropdownlist
	edittext
	group
	iconbutton
	image
	item
	listbox
	panel
	progressbar
	radiobutton
	scrollbar
	slider
	statictext

	Control object properties
	active
	alignment
	bounds
	enabled
	helpTip
	icon
	index
	items
	itemSize
	jumpdelta
	justify
	location
	maxvalue
	minvalue
	parent
	preferredSize
	properties
	selected
	selection
	size
	stepdelta
	text
	textselection
	type
	value
	value
	visible

	Control object functions
	add
	find
	hide
	notify
	remove
	removeAll
	show
	toString
	valueOf

	Control event-handling callbacks
	onClick
	onChange
	onChanging

	Size and Location Objects
	Bounds
	Dimension
	Margins
	Point

	LayoutManager Object
	AutoLayoutManager object constructor
	AutoLayoutManager object properties
	AutoLayoutManager object functions
	layout

	MenuElement Object
	MenuElement class functions
	create
	find
	remove
	Creating new menu elements

	MenuElement object properties
	altDown
	checked
	cmdDown
	ctrlDown
	enabled
	id
	onDisplay
	optionDown
	onSelect
	shiftDown
	text
	type

	Bridge menu and command identifiers
	Bridge menu identifiers
	Bridge submenu and command identifiers

	Interapplication Communication with Scripts
	Cross-DOM Functions
	Cross-DOM API Reference
	executeScript
	open
	openAsNew
	print
	quit
	reveal

	Application-Specific Exported Functions
	Communicating Through Interapplication Messages
	Sending messages
	Receiving messages
	Handling unsolicited messages
	Handling responses from the message target
	Passing values between applications
	Passing simple types
	Passing complex types

	Interapplication Message API Reference
	BridgeTalk Class
	BridgeTalk class properties
	appLocale
	appName
	appVersion
	onReceive

	BridgeTalk class functions
	bringToFront
	getSpecifier
	getTargets
	isRunning
	launch
	pump

	BridgeTalk Message Object
	BridgeTalk message object constructor
	BridgeTalk message object properties
	body
	headers
	sender
	target
	timeout
	type

	BridgeTalk message object callbacks
	onError
	onReceive
	onResult

	BridgeTalk message object functions
	send
	sendResult

	Messaging Error Codes

	Sample Workflow Automation Scripts

	ExtendScript Tools and Features
	The ExtendScript Toolkit
	Configuring the Toolkit window
	Selecting a debugging target
	Selecting scripts
	Tracking data
	The JavaScript console
	The call stack
	The Script Editor
	Mouse navigation and selection
	Keyboard navigation and selection
	Syntax checking

	Debugging in the Toolkit
	Evaluation in help tips
	Controlling code execution
	Visual indication of execution states
	Setting breakpoints

	Profiling

	Dollar ($) Object
	Dollar ($) object properties
	build
	buildDate
	error
	flags
	global
	level
	locale
	localize
	memCache
	objects
	os
	screens
	strict
	version

	Dollar ($) object functions
	about
	bp
	clearbp
	gc
	getenv
	list
	setbp
	sleep
	summary
	write
	writeln
	Object statistics

	ExtendScript Reflection Interface
	Reflection Object
	Reflection object properties
	description
	help
	methods
	name
	properties

	Reflection object functions
	find

	ReflectionInfo Object
	ReflectionInfo object properties
	arguments
	dataType
	defaultValue
	description
	help
	isCollection
	max
	min
	name
	type

	Localizing ExtendScript Strings
	Variable values in localized strings
	Enabling automatic localization
	Locale names
	Testing localization
	Global localize function
	localize

	User Notification Helper Functions
	Global alert function
	alert

	Global confirm function
	confirm

	Global prompt function
	prompt

	Specifying Measurement Values
	UnitValue Object
	UnitValue object constructor
	UnitValue object properties
	baseUnit
	type
	value

	UnitValue object functions
	as
	convert

	Converting pixel and percentage values
	Computing with unit values

	Modular Programming Support
	Preprocessor directives
	#engine name
	#include file
	#includepath path
	#script name
	#strict on
	#target name

	Importing and exporting between scripts

	Operator Overloading
	Application and Namespace Specifiers
	Application specifiers
	Namespace specifiers

	Script Locations and Checking Application Installation

	Index

