
Technical paper

Non-Destructive Imaging:
An Evolution of Rendering
Technology
by Peter Krogh

Introduction
Over the last couple of decades, the term non-destructive has been applied to many dif-
ferent kinds of imaging technologies. While the term is useful as a broad classification,
it covers so much ground that it can often add more confusion than clarity, particularly
when deciding which type of non-destructive imaging offers the best tools for the task
at hand. This confusion is exacerbated by the fact that there are no accepted terms to
describe the different kinds of non-destructive imaging (NDI) or the components of the
various methods.

In general, NDI refers to imaging processes where the source image may be adjusted in
a way that leaves the original data intact. There are several different ways to accomplish
this type of adjustment, each with its own uses, strengths, and weaknesses.

In this paper, we’ll look at several different NDI technologies and offer a nomenclature
to distinguish among the methods. We’ll put a name to the processes, so that the user
can more clearly understand the components, and explain how the user can benefit
from each process. We’ll also describe the relationships between the components and
provide a visual representation of those relationships.

We’ll take an extended look at a new kind of NDI software—one that is based around
the concept of a library, or a catalog. We’ll describe its structure, uses, advantages, and
drawbacks.

Part I—The evolution of non-destructive imaging
Let’s take a short trip through the history of non-destructive imaging and see how we
got to where we are today. We’ll look at the development of non-destructive imaging
technologies and examine how they have changed.

Overview
Non-destructive editing technologies are not new, nor are they confined to imag-
ing. We have had the ability to preserve multiple versions of individual photos since
imaging software first arrived, and therefore we have always had some sort of NDI.
Additionally, software for graphic design and video editing has long had non-destruc-
tive capabilities, through the use of referenced files. So what’s the big deal?

While NDI has been around for a long while, digital photography changes the land-
scape in some very important ways. Because many raw camera formats are proprietary,
most imaging software cannot write changes back to the original files. This has spurred
the development of imaging software that works with referenced files, rather than
by changing the original source image. What started as a handicap—the inability to
alter the original file—has led to great improvements in efficiency of workflow, storage
requirements, and image management.

The efficiencies this new class of software brings are quite important for the challenges
presented by digital photography. Some of those challenges include:

The creation of a vast number of photos

The need to apply identical adjustments to many photos in one operation

The need to interpret a single source image in multiple ways (black and
white, and color, for instance)

•

•

•

TABLE OF CONTENTS

1	 Introduction	

1	 Part	I—The	evolution	of		
non-destructive	imaging		

5	 Part	II—The	rendering	engine

	 7					Rendering	types

	 10			Previews

12	 Part	III—Catalog-based	non-destructive	
imaging

	 14					File	browsers	versus		
cataloging	software

	 15					The	advantages	of	catalog-based	
PIE	software

17	 Conclusion

18	 Glossary

	

SO WHAT IS DESTRUCTIVE IMAGING?

You	might	be	tempted	to	ask,	why	destroy	your	
photos?	Aren’t	you	supposed	to	make	them	
better?	The	word	destructive	is	not	referring	to	
destruction	of	the	photo’s	goodness,	but	rather	
destruction	of	the	original	data	in	the	image.

So	while	you	may	make	a	photo	“better”	by	
lightening	up	shadow	detail,	you	may	do	it	in	a	
way	that	destroys	the	original	information.	This	
paper	concentrates	on	ways	to	adjust	photos	
without	losing	the	original	information.

�
Non-Destructive	Imaging

The desire to take advantage of rapidly evolving imaging technology to reinterpret
images with more capable software in the future

Additionally, the tools we can use to manage photos work very well with the rendering tools in
NDI software. The rendering metadata and the descriptive metadata can be managed by a single
application, offering the user a single environment to describe, group, adjust, manage, and out-
put images.

Film photography—originals, prints, and duplicates
As we think about digital photography, it will be helpful at times to compare it to the world of
film photography. With the exception of a few specialized retouching processes, the original film
image, once created, never changes. This singular and unchanging original may be archived in a
notebook and can be used as a source photo for multiple interpretations, usually in the form of
prints. Film copies of the photo—generally called duplicates—are not identical copies, due to the
inherent limitations of the analog film copying process. Furthermore, film duplicates are often
created with corrections for cropping or color balance. In many ways, film duplicates should
be thought of as prints of the image—further interpretations of the image rendered onto film
instead of paper.

In digital photography, we also have a single original—the image data produced by the camera.
And a print on paper is still a print. But the term duplicates does not offer enough nuance to be
all-inclusive. You might have an exact duplicate of the photo file—a copy—or you might have
a version of the photo file that has had some adjustments incorporated—which we will call a
derivative file, since it’s derived from the original.

Much of what we’ll look at in this paper centers around the concepts of original and derivative
files—how they are stored, adjusted, managed, and made use of.

Derivative file NDI—Save As
NDI has always been achievable by simply saving the file as a new file, once adjustments were
made. By preserving the original file in its original state, the user is free to make additional
derivative files without compromising the integrity of the source image.

Early users of Adobe® Photoshop® would frequently use the Save As command to create new files
when changes were made, to ensure that they could go back to a prior version. These earlier ver-
sions might be needed if errors were made during the imaging process or if the user wanted to
explore a different interpretation of the photo.

While this approach enabled the user to save both the original and the adjusted version, it came
at a high price. The creation of multiple variations of a photo could bring great confusion. Often
users would append a term to the filename to indicate its adjustment, but that might be hard
to sort out later. Trying to sort out the difference between Picture1_final3_Sharpen.TIFF and
Picture1_final3_realfinal.TIFF would often not be worth the effort.

Use of derivative files to enable NDI also brings a high price tag in terms of storage. Since the
entire file needs to be resaved, even small changes require resources to duplicate and archive the
entire file. So while use of derivatives enables NDI, it does not do it very efficiently.

Figure 1: Non-destructive	imaging	has	always	been	possible	by	creating	derivative	files	through	the	use	of	the		
Save	As	command.

•

Iceland Landscape.jpg Iceland Landscape-v2.jpgAdobe Photoshop

�
Non-Destructive	Imaging

Self-referenced NDI—layers and more layers
In Photoshop 3, layers were introduced and it became possible to save multiple versions
of the same image within a single file. This helped with the management difficulties associ-
ated with derivative file workflow but did nothing to address the storage needs. In Photoshop 4,
adjustment layers were introduced, and it became possible to wrap up the source image with
a set of instructions (or many sets of instructions) for rendering the photo. Let’s call this
self-referenced NDI.

In order to complete the self-referenced package, the file needs to be built with a composite layer
or embedded preview on top. This component of the file structure shows what the image looks
like when all the adjustments are applied. If the file is built without the preview, then it can only
be correctly displayed when it’s sent through a rendering engine that correctly recreates the
modifications specified by the non-destructive layers. (More on this later.)

Using self-referencing files offers some significant advantages over derivative file workflow. Since
the instructions to adjust the image take up much less space than creating an additional file, it’s
much more economical in terms of storage. And since you can name adjustment layers for an
effect—as well as clearly see what the adjustment does—it becomes much easier to sort out what
has been done to an image.

Using adjustment layers also offers you the ability to create a separate interpretation of the file—
a black-and-white version, for instance—while still making use of some of the work done for
other versions, such as retouching.

As the capability of NDI through adjustment layers has grown, it has become possible to keep
access to a virtually infinite number of variations of a particular file inside a single TIFF or
Photoshop Document (PSD) file. While this is great for master file workflow, it does not work
so well for the kinds of tasks we need to do with a digital photography collection.

Figure �: Adjustment	layers	offer	
the	ability	to	apply	non-destructive	
changes	to	image	files.	In	this	case,	
both	the	black-and-white	and	color	
versions	can	take	advantage	of	the	
retouching	done	on	a	lower	layer.

Pure instruction sets—video editing, page design, and Live Picture
Early on, some software programs moved to a structure that assumed that the original source
would not be altered. Instead, control was achieved by means of saved instructions that could
be applied to the work once editing was finished and output was needed. This has been common
practice for all graphic design and video-editing software for some time. A photo-editing appli-
cation, Live Picture, also made use of this structure for still photos, by use of proxy images.

In design and video programs, the use of referenced files was adopted to get around hardware
and performance limitations. Because a magazine layout file grew too large when the photos
were embedded, software was developed that used a small proxy of the photo and referenced the
high-resolution file when output was needed. In video editing, referenced file editing is again
necessary because file sizes are too large and processors are too slow to work with the full-
resolution assets.

We’re going to call the editing of images by creating instructions or parameters parametric image
editing (PIE). For the purposes of this paper, we’ll call the software that does this PIE software.

LAYERS AND LAYER SETS

By	using	layers	and	layer	sets	effectively,	many	
different	versions	of	an	image	can	be	stored	in	a	
single	file.	While	different	versions	can	be	stored	
in	a	single	document,	only	one	version	will	
be	visible	at	one	time.	This	composite	is	what	
you	see	in	Photoshop	and	is	used	to	build	the	
preview	at	the	time	the	file	is	saved.

The	preview	is	essential	for	other	software	to	see	
the	effects	of	the	Photoshop	adjustment	layers.	
A	built-in	preview	is	standard	in	TIFF	files	but	is		
a	selectable	option	in	PSD	files.

�
Non-Destructive	Imaging

Figure �: Graphic	design	software,	such	as	InDesign®,	works	by	means	of	proxy	images.	The	layout	software	
creates	a	low-resolution	version	of	the	file	to	use	in	the	design	process.	It	references	a	high-resolution	version	of	
the	file	that’s	used	for	output.	This	structure	offers	the	ability	to	keep	documents	relatively	small	and	preserves	

the	creative	flexibility	to	make	changes	to	all	elements	of	the	project.

Live Picture was an image-editing program that used a small version of the file—a proxy—to
show the user the effects of any adjustment tools. By working on small files, adjustment decisions
could be made quickly. When a final, derivative version of the image was needed, the original
source image could be sent through the Live Picture rendering engine for the creation of high-
resolution output.

Figure �:	Live	Picture	used	a	small	proxy	of	the	image	file	to	show	the	effect	of	changes	to	the	photo.	When	the	

user	was	satisfied	with	the	image,	the	same	adjustments	were	applied	to	a	larger	version	of	the	file.	

On the accounting side, working with proxy images and referenced files offers performance
advantages and great savings on data storage. It also offers something for the creative side—the
ability to experiment with alternate versions and to refine your work easily. Because the saved
work is just a set of instructions—and instructions are easy to duplicate and refine—you can
freely experiment with branching the work off from any point in the creative process, without
fear of losing good work when in search of better.

Digital camera raw files—parametric image editing takes off
Although video and design software has been using referenced files for many years, it was not
until the digital camera became popular that referenced imaging took off as the method for
adjusting still photos. To some degree, referenced imaging was making lemonade out of lemons.
At the same time, it was just the right combination of user need, technological development, and
maturing software.

Nearly all digital cameras produce a mosaiced image as a raw file. Although this may look like
a regular photo once it’s displayed in software, in reality it is a checkerboard of red, green, and
blue values that are transformed into an RGB image when the file is processed by a Raw File
Converter. When we look at one of these raw photos on our computer screen, we either see a
live rendering of the mosaiced data, or we see a fixed rendering in the form of a JPEG preview
that has been made by the camera and placed inside the raw file.

2
Non-Destructive Image Editing

Part I—The evolution of non-destructive imaging
Let’s take a short trip through the history of non-destructive imaging, and see how we got to
where we are today. We’ll look at the development of non-destructive imaging technologies and
examine how they have changed.

Film photography—originals, prints, and duplicates
As we think about digital photography, it will be helpful at times to compare it to the world of
fi lm photography. With the exception of a few specialized retouching processes, the original fi lm
image, once created, never changes. Th is singular and unchanging original may be archived in
a notebook, and can be used as a source photo for multiple interpretations, usually in the form
of prints. Film copies of the photo, generally called duplicates, are not identical copies, due to
the limitations of the fi lm copying process. Furthermore, fi lm duplicates are oft en created with
corrections to cropping or color balance. In many ways, fi lm duplicates should be thought of as
prints of the image—further interpretations of the image rendered onto fi lm instead of paper.

In digital photography, we also have a single original—the image data produced by the camera.
And a print on paper is still a print. But the term duplicates does not off er enough nuance to be
all-inclusive. You might have an exact duplicate of the photo fi le—a copy—or you might have a
version of the photo fi le that has had some adjustments made—a derivative fi le, since it’s derived
from the original.

Much of what we’ll look at in this paper centers around the concepts of original and derivative
fi les—how they are stored, adjusted, managed, and made use of.

Derivative fi le NDI—Save As
NDI has always been achievable by simply saving the fi le as a new fi le, once adjustments were
made. By preserving the original fi le in its original state, the user is free to make additional
derivative fi les without compromising the integrity of the source image.

Early users of Photoshop would frequently save photo fi les as new fi les when changes were made,
to ensure that they could go back to a prior version. Th ese earlier version might be needed if
errors were made during the imaging process, or if the user wanted to explore a diff erent inter-
pretation of the photo.

While this approach enabled the user to save both the original and the adjusted version, it came
at a high price. Th e creation of multiple variations of an photo could bring great confusion. Oft en
users would append a term to the fi lename to indicate its adjustment, but that might be hard
to sort out later. Trying to sort out the diff erence between Picture�_fi nal�_Sharpen.TIFF and
Picture�_fi nal�_realfi nal.TIFF would oft en not be worth the eff ort.

Use of derivative fi les to enable NDI also brings a high price tag in terms of storage. Since the
entire fi le needs to be resaved, even small changes require resources to duplicate and archive the
entire fi le. So while use of derivatives enables NDI, it does not do it very effi ciently.

Figure 1: Non-destructive imaging has always been possible through the use of derivative fi les. By saving a
photo with a new name, the original could be preserved, and co-exist with the new version. However, it comes
at a pretty high price in terms of storage and confusion.

Picture1.jpg Picture1_v2.jpgPhotoshop

The low-res proxy
of the original…

…is manipulated in
PIE software (Live Picture

in this case)…

Metadata Processing Instructions

…which generates metadata
processing instructions.

Original High-Res Image Data

Processing Engine

Final Rendered Output

�
Non-Destructive	Imaging

Figure �: Raw	files	from	digital	cameras	record	the	information	in	a	mosaiced	pattern	that	must	be	converted	
to	RGB	color	to	be	displayed.	This	mosaiced	pattern	is	a	useful	format	for	camera	data—because	the	sensor	
records	it	that	way—but	it	is	not	an	appropriate	format	to	store	rendered	images.	Therefore,	working	with	
camera	raw	files	will	always	be	a	one-way	street,	as	far	as	the	source	image	data	is	concerned.	Source	data	can	
be	read	from	but	not	written	to,	which	forces	raw	software	to	non-destructively	interpret	the	file	rather	than	
altering	it.	

There’s a critical issue that prevents desktop applications from resaving raw files. With few excep-
tions (for example, those cameras that shoot a Digital Negative [DNG] raw format in camera),
raw images out of a digital camera are proprietary and undocumented. This means that third-
party software should generally not make any alterations to a raw file because of the possibility
of corrupting the file.

These two characteristics—the encoded color information and the undocumented file struc-
ture—have led to the development of photo-editing software that works only as NDI software
and that will never change the source image. While this was a painful transition for early adopt-
ers of digital cameras, it has led to wonderful developments in photo software and workflow.
These include multiple photo manipulation, unlimited undo, and—thanks to just-in-time imag-
ing software—great space savings.

Some of the top benefits of NDI include:

Multiple photo manipulation: Digital cameras have the ability to produce large numbers of
similar files in a way that scanning photos never would have. Parametric image editing (PIE)—
the process of editing images by creating instructions or parameters for adjustment—makes it
easy to apply settings made for one photo to many others very quickly.

Unlimited undo: Since all image adjustments are saved simply as processing instructions, it’s
easy to change those instructions to create a different interpretation of an image. In order to
save the additional variations, all the user needs to do is to save the instructions that are used
to create the variations.

Space savings: Now that computers are fast enough to create renderings from the images as
needed—let’s call this just-in-time rendering—the user can build a library of images that con-
sists largely of the source images and the rendering instructions. Since instructions are a lot
smaller than pixels to store, the storage requirements are greatly reduced.

Part II—The rendering engine

Figure 6: The	rendering	engine	in	its	simplest	form:	The	source	image	and	your	processing	settings		

(in	the	form	of	rendering	metadata)	are	processed	in	the	rendering	software	and	a	finished	image	is	created.

•

•

•

Raw File ConverterCamera Raw File Rendered Image

Rendered ImageRendering Engine

Rendering Metadata

Source Image

+

6
Non-Destructive	Imaging

Understanding rendering
As you start working with referenced-image NDI software, it’s important to understand the ren-
dering engine. There are some important differences in how referenced images work and in how
fixed-rendered images work. Let’s examine this.

Fixed rendering refers to any image that has its rendering described in pixel information, such as
an RGB or a grayscale value. The fixed rendering is not dependent on any particular rendering
engine to display according to the user’s wishes. In many ways, we can think of fixed rendering
as a print of the image, because, like a print, the user has made a fixed interpretation of the origi-
nal image that is not dependent on the presence of the original negative or the enlarger.

When the RGB value is attached to an International Color Consortium (ICC) profile (which
gives the RGB number an objective meaning), each distinct three-number combination describes
an exact color. The end result is a single correct way to display that pixel’s color, within the limi-
tations of the viewing device (no monitor can display all colors).

A raw file, however, does not have the same objective color value that a fixed-rendered image
does. The color information in the raw file needs to be sent through a rendering engine to be
turned into standard RGB color. Each rendering engine will decode the color information in
a different way. Additionally, each rendering engine has controls to adjust how the raw data
is decoded and displayed.

This means that the “color” of a particular pixel in a raw image is a combination of three things:
the original image data, the rendering engine’s mathematical formulas, and the settings applied
by the user to the rendering software. While we can’t change the original image data, we can
decide to use a different rendering engine (a different program to convert the raw files), and we
can decide to change the settings used to interpret the image.

It’s important to understand that there is no objectively correct way to decode and interpret the
raw data. There is only subjective interpretation, based on the mathematical formulas that are
built into the rendering engine and the user’s settings. In order to make a version permanent and
available to all different programs, one needs to create a fixed-rendered version of the file, so that
the color values are exactly specified and not dependent on a particular rendering engine.

Just-in-time rendering versus caching
Software that works with a rendering engine can be thought of as just-in-time rendering soft-
ware. This term, from the manufacturing industry, refers to a setup where work is completed and
delivered only as necessary, and not before. Since the source images can be interpreted in many
different ways, it does not make sense to spend a lot of resources prerendering the images. It’s
quite likely, for instance, that as you are getting ready to send photos to a printer, you may want
to perform a few last-minute adjustments to the images.

In a just-in-time environment, the software will perform the rendering as needed for the task at
hand. If the user needs to print, the current version of the photo will be rendered in an appropri-
ate way, and that information will be sent to the printer. If the user wants to send it to another
program, like Photoshop, for pixel editing, a rendered 16-bit version of the file can be created and
saved to disk once it’s needed, but not before.

Just-in-time rendering saves lots of disk space and saves the user a lot of work, but that does
not mean that every rendering task is saved for the last second. The need to look through lots of
images requires that some rendering be done up front, so that the rendering engine does not fall
behind. Previews of the images are created and cached, so that images can be examined quickly.

The cached version of the images are simply proxies of the larger source files. They are often
created as JPEG files that compress the color and detail of the photo to some degree. They may
be full size, or they may be smaller in dimension than the original files. In Part III of this paper,
we’ll look at some differences in how the cached versions of the images are handled.

FOR MORE INFORMATION

This	paper	describes	a	number	of	aspects	of	the	
rendering	engine,	particularly	as	they	relate	to	non-
destructive	imaging.	For	a	more	thorough	discussion	
of	the	issues	related	to	rendering	and	digital	camera	
raw	files,	please	refer	to	the	Adobe	technical	paper	
“Rendering	the	Print:	The	Art	of	Digital	Photography”	
by	Karl	Lang.

http://www.adobe.com/designcenter/dialogbox/karllang/pscs3_rendering_image.pdf

�
Non-Destructive	Imaging

Each rendering engine is different
One of the most common points of confusion with raw file rendering is the difference between
rendering engines. Photos that looked one way on the back of the camera or when opened with
one raw file converter may look quite different when opened with another piece of software. It’s
important to understand that your camera has a raw file converter and a rendering engine of its
own, and that the rendering engine on the camera will be different from the engine in any third-
party desktop software.

When you shoot a picture on a digital camera, the raw file converter in the camera creates a JPEG
file from the raw file and places the JPEG image inside the raw file as a preview. This is the pic-
ture that shows up on the camera’s LCD screen and in some third-party browsing software like
Photo Mechanic. While this is the first interpretation of the image, it’s not necessarily any more
accurate than the one generated by third-party software. The engineers who built the camera
(and its raw file conversion engine) are—like third-party developers—trying to make the most
pleasing rendition and not necessarily the most accurate one.

Figure �: A	raw	image	produced	from	a	digital	camera	contains	more	than	you	might	think.	Not	only	is	there		
the	original	raw	image	data,	but	there	is	metadata	created	by	the	camera,	including	the	user	settings	and		
time	the	photo	was	shot.	Additionally,	there	is	a	preview	of	the	image	file,	as	converted	by	the	camera’s	onboard	
raw	file	converter.	This	JPEG	image	is	what	is	displayed	on	the	back	of	the	camera.	Since	this	image	goes	through	
the	proprietary	converter	in	the	camera,	it	will	not	exactly	match	the	rendering	produced	by	third-party		
raw	converters.

Rendering types
Because PIE software only shows you an interpretation of the photo, it’s important to understand
something about how that interpretation is created, stored, and exported. To do this we need to
give names to various kinds of interpretations. Let’s break this out into several different classes
of images.

Source image
This is the starting point in the imaging system—the original image. While we have mostly been
talking about raw images, PIE software is now being used on source images that come in to the
program as fully processed RGB images, such as JPEGs or TIFFs. Many users find they want to
extend the benefits of parametric image editing software to these previously rendered images.

While we’re talking about sources, let’s make a distinction between the source image and the
source file. As described earlier, many image file types contain several versions of an image inside
the same file, such as the raw data and a JPEG preview. The source image is the image data itself,
while the source file is the document that the image data has been saved into.

Engine-dependent rendering
Let’s use the term engine-dependent rendering to refer to any system where the user’s interpreta-
tion of the file can only be seen by sending the image through a particular rendering engine. This
is distinct from a fixed rendering, such as a JPEG adjusted with Photoshop or Google Picasa™,
where the finished photo can be displayed identically by any color-managed imaging program.
When you look at an engine-dependent rendering, you might be looking at a live rendering (like
the Develop module of Adobe® Photoshop® Lightroom™), or you might be looking at a preview
that has been cached to disc, as in the Library module of Photoshop Lightroom.

JPEG Preview

+

Metadata

+

Mosaiced Raw Image
Raw File

�
Non-Destructive	Imaging

Live rendering
A live rendering is a view of the image that only exists when the source image is loaded into the
software. In the darkroom, this would be akin to putting a slide in the enlarger and projecting it
on the baseboard. You can see the photo, but the resulting image is no more permanent, nor eas-
ily shared, than the image coming out of the enlarger lens. (We’ll discuss previews—cached live
renderings—shortly.) This rendering can be considered more/less as a temporary preview.

Default rendering
The first time you look at an image in a parametric image editor, you see the default rendering
of that image. It’s important to understand that this is not a “correct” or “un-retouched” version
of the image. The default rendering is just a starting point—one that is determined by how the
software is set up. It’s very much like putting a slide in an enlarger and turning the lamp on. It
may be a good way to interpret the image, or it may need lots of adjustment to please you. Most
PIE software will let you create your own defaults— to be used as a default for a specific cam-
era, for instance—that can be used as your own starting points for image adjustment. This may
include such items as turning auto corrections on or off, or other settings.

Saved engine-dependent rendering
Once you have made basic adjustments and color corrections to a photo, you may wish to save
the settings you used so that you can access this version in the future. Some PIE software will
automatically store the last settings that you used when adjusting an image, and some will also
cache the preview that was generated in the process. Using PIE software, you can now generate
an unlimited number of different renderings of any given photo. Storing and recalling multiple
renderings for a single photo is discussed in Part III—Catalog-based non-destructive imaging.

To use our enlarger metaphor, saving the rendering settings would be similar to writing down
your enlarger settings once you have obtained a print you like. With a complete recording of the
settings, you can reload the image and reset the controls in order to reproduce that particular
rendering of the image.

Rendering metadata
When you save a particular rendering, you do so by saving the rendering metadata. This meta-
data includes the set of instructions that the rendering engine uses to process the image. Most
raw files come with some metadata that is used during the rendering process, such as the white
balance setting that the user selected in camera. (In general, most of the in-camera rendering
instructions that are saved with the photo at the time of exposure are only useful to the camera
manufacturer’s software.)

In fact, the rendering metadata created by any PIE software will only be useful to that particular
rendering engine. Adobe® Photoshop® Camera Raw and Photoshop Lightroom, for instance, both
use the same rendering engine when interpreting images, so they will give identical renderings
when the rendering metadata is identical.

Rendering metadata for many programs is saved as XMP data. An example of XMP information
is shown below. These settings can live inside the file (depending on the format), in a sidecar file,
or in a database, just like the informational metadata that describes what the image is about.
We will discuss this further in the next section, Fixed renderings—derivatives and prints.

<rdf:Description rdf:about=”” xmlns:crs=”http://ns.adobe.com/camera-raw-settings/1.0/”>
 <crs:WhiteBalance>As Shot</crs:WhiteBalance>
 <crs:Temperature>4450</crs:Temperature>
 <crs:Tint>-5</crs:Tint>
 <crs:Exposure>+0.35</crs:Exposure>
 <crs:Shadows>12</crs:Shadows>
 <crs:Brightness>+50</crs:Brightness>
 <crs:Contrast>+25</crs:Contrast>
 </rdf:Description>

Figure �: Here’s	a	bit	of	the	rendering	metadata	that	came	out	of	a	sidecar	file	created	by	Adobe	Photoshop	
Camera	Raw.	The	information	at	the	start	of	the	metadata	tells	the	program	that	this	is	information	for	Adobe	
Photoshop	Camera	Raw	(or	Photoshop	Lightroom)	to	use	when	interpreting	an	image.	It’s	followed	by	the	
specific	settings	for	the	controls	in	the	engine.	As	long		as	this	information	stays	with	the	file,	the	program		
that	created	it	can	re-create	the	rendering	that	it	describes.

�
Non-Destructive	Imaging

Fixed renderings—derivatives and prints
In the course of working with image files, there are many times when it’s useful to create a fixed
rendering of one sort or another. Perhaps it’s needed so that the photo can be easily identified
and examined; sometimes it will be desired because a photo is “finished” and needs to be sent off
to another person or software application. Sometimes that fixed rendering will be made in the
form of a print. Let’s take a look at how and when fixed renderings can be made and where they
can live.

Baking in the settings—derivative files
When you use PIE software to create a new image file according to the user’s adjustments, you’ve
made a derivative file. This new file, derived from the original, is an output-referred version of the
original photo and therefore does not need the raw processing engine to be displayed according
to the user’s adjustments.

Derivative files are useful for a lot of tasks, like building web galleries, sending images to print-
ers, proofing, and opening images in other programs. When you make the derivative files you are
“baking in” the settings. And once they’re cooked into the pixels, they can’t be uncooked. That is,
you’ve decided on these settings and can’t undo them. A derivative file is very much like a print.
You make it when you are satisfied with the adjustment you have made to the photo. Once it’s
been created, you no longer need the enlarger—it’s a freestanding image. And just like making a
print, it takes up storage resources if you want to keep it.

Prints
A print is also a fixed rendering. As the highest-cost way of making a fixed rendering—in terms
of time, monetary cost, and storage needs—it generally only makes sense to create a print when
there is an actual need for one.

Figure �: Now	that	we	have	the	components	described,	let’s	look	at	how	they	work	together.	The	source	image	
and	the	rendering	metadata	are	sent	through	the	rendering	engine.	When	you	look	at	the	photo	that	comes	out	
the	other	end	in	a	program	like	Adobe®	Bridge	or	Photoshop	Lightroom,	you	are	only	seeing	a	temporary	ren-
dering	of	it.	If	you	wish	to	save	a	stand-alone	version	of	the	adjusted	photo,	you	need	to	create	a	whole	new	file,	
since	the	programs	don’t	change	the	source	data.	You	can	also	create	a	whole	new	copy	of	the	photo	as	a	print.

Source Information on Disk Imaging Application

Send to Display

Output to Printer

Virtual Rendering
(On-Screen Preview)

Fixed Rendering
(RGB File or Cached Preview)

Fixed Rendering
(Print)

Export or
Save to Disk

Rendering Metadata

Rendering Engine

Source Image

+

10
Non-Destructive	Imaging

Previews
One of the most useful tools in non-destructive imaging is the preview—usually a JPEG version
of the image that lives in the image file, alongside the image file, or in a catalog of image files.
A preview is a semipermanent fixed rendering of the image that shows the adjustments made
by the rendering engine.

Previews are created at many stages of the rendering process to speed up the display of the
images or to create a version that can be displayed identically by any program. A preview
is a proxy of the image, useful in selecting, managing, and sometimes outputting photos.

Previews that are created by a rendering engine are dependent upon that particular engine.
As such, they are only one interpretation of the file. Some programs will offer the user control
over when, where, how large, and with what settings a preview is created. Some previews are
created automatically with little or no user control.

Let’s look at where previews show up and how they are used.

Embedded previews—raw files
Raw files created by digital cameras must have a preview inside the raw file itself in order to be
displayed as a normal full-color image. Most current digital cameras will put a preview inside the
raw file that has the same resolution as the raw data itself. (As a matter of fact, there are usually
several previews of differing resolutions inside each raw file.) This preview can be accessed and
properly displayed even by software or operating systems that cannot decode the raw file data.

Previews in raw files are built according to the user’s settings for the camera, such as white bal-
ance, sharpening, and contrast control. Previews in raw files can only be created by software
made by the camera manufacturer, unless the raw file is in Digital Negative (DNG) format, which
supports an open standard for writing and re-writing the preview by third-party software.

Even if a camera does not create a DNG in camera, raw files can be converted to DNG at a later
date. These DNG conversions retain the flexibility of adjustment that the proprietary raw files
had but offer a number of additional capabilities. The ability for any third-party raw processing
engine to embed its own engine-dependent rendering (EDR) preview and rendering settings into
the DNG file is one of the most compelling reasons to consider the format for archival storage.
TIFF and JPEG files can also be converted to DNG after editing in order to wrap the source
image up with a rendered preview of the adjusted photo.

Figure 10: Proprietary	raw	files,	such	as	CR2	and	NEF,	contain	a	preview	that	can	only	be	modified	by	manu-
facturer’s	software.	Because	DNG	is	an	openly	documented	file	format,	any	software	can	replace	the	preview	
with	one	that	reflects	the	user’s	adjustments.	This	enables	the	user	to	bundle	up	the	source	image	data,	the	
metadata,	and	a	semi-permanent	fixed	rendering	into	a	single	file.

Mosaiced Raw Image Embedded PreviewUnlimited Metadata

<exif:ExposureTime>1/60</exif:ExposureTime>
<exif:FNumber>18/1</exif:FNumber>

<exif:FocalLength>600/10</exif:FocalLength>

Third-Party
Software

Adjustments

11
Non-Destructive	Imaging

Cached previews—file browsers
A file browser will often create its own previews to speed up the display of the photos. These
previews will generally be saved as files that are hidden to the user, so that they are not confused
with versions of the file that the user might have created as derivative files. Adobe Bridge creates
previews that live in a central database in the Users directory and can also save the previews to
an invisible file inside the folder in which the images are stored (invisible in Bridge CS3 only).

Many browsers, such as Photo Mechanic, will make extensive use of the preview embedded in
the raw file to boost speed. Because they don’t have their own rendering engines, they are depen-
dent on the embedded preview to be able to display the image.

Cached previews—cataloging software
Cataloging software makes use of previews in much the same way browsing software does, but
with added capabilities. The previews are used to speed up the display of the images, and in the
case of cataloging software that does not include a rendering engine, embedded previews are
used as a proxy for the adjusted image.

In addition, cataloging software also has the capability to work with off-line media—files that
are not currently connected to the computer. So rather than storing the previews in an invisible
way like a browser, cataloging software needs to include the previews in the catalog itself. And
because the size of the previews can grow very large (when the catalog contains a large number
of photos), cataloging software will generally offer the user some control over how the previews
are generated, saved, and transferred between computers.

Cataloging software that has its own rendering engine can make and remake previews according
to the user’s adjustments of the photos. It can also make use of the previews for certain kinds of
output, like draft-quality printing. We’ll look at this more closely in Part III.

Figure 11: Cataloging	software	creates	previews	of	the	photos	and	stores	them	with	the	rest	of	the	catalog	
metadata.	These	previews	are	used	to	identify	and	organize	the	photos.	Some	output	created	by	the		
cataloging	software,	such	as	proof	prints	or	web	galleries,	may	use	the	preview	as	a	proxy	for	the	file	in	the	
interest	of	speed.

Catalog Folder

Metadata, Including
Non-Destructive Adjustments

Preview Cache

1�
Non-Destructive	Imaging

Part III—Catalog-based non-destructive imaging
While imaging applications were moving from destructive pixel pushing to referenced file NDI,
another development was happening in the imaging arena. Cataloging programs, which were
formerly geared to graphic designers, started to pay attention to the digital photography space.
Rather than handling photos individually, these programs use a library model for their structure.

In this model a catalog holds all the information about many photo files. The files are stored in
a single folder, in multiple folders, or even across multiple hard drives. The software knows about
each photo, and can control it from a single location. Because the software has collected all the
metadata about the photos in a central location—and because the software can create new meta-
data as the user deems necessary—the catalog becomes a versatile place to know about entire
collections, and to control and manage the photos.

Figure 1�: Here’s	a	screenshot	from	a	cataloging	program—iView	MediaPro	(now	Microsoft®	Expression®		
Media).	Each	photo	indexed	by	the	catalog	is	a	separate	record.	This	view	shows	you	a	small	fraction	of	the	
information	a	cataloging	program	would	know	about	the	photos.	There’s	a	thumbnail	preview,	followed	by	
information	about	the	file—in	this	case	we’re	looking	at	the	file	size	and	the	creation	date	of	the	photo.	This	is	
followed	by	some	annotation	information,	including	the	author’s	name	and	any	keywords	that	are	attached		
to	the	photo.	Cataloging	software	offers	the	ability	to	collect	information	about	your	entire	photographic	
archive	in	one	place	and	to	organize	the	photos	according	to	many	different	criteria.

Cataloging systems rely on metadata to know about and control the photos. Since non-
destructive imaging relies on metadata to control the rendering of the photo, it’s a natural
fit for cataloging software and non-destructive imaging to grow together. This is just what’s
happened over the last few years, with the appearance of programs like Apple Aperture™
and Photoshop Lightroom.

The advantages that cataloging software offers for the raw photographer are numerous. The
photographer (or image librarian) can see and segment an entire library based on the content,
quality, and usage of the photos. This is very powerful information to use when making decisions
about how much effort to spend adjusting photos or even which ones deserve any adjustment
at all. It allows the photographer to make decisions about image editing and picture grouping
concurrently and recursively.

Figure 1�: This	figure	describes	how	information	flows	in	a	catalog-based	system.	When	photos	are	originally	
indexed,	embedded	metadata	is	collected	in	the	catalog	database.	A	preview	of	the	file	is	created	that	enables	
the	database	to	show	what	the	photo	looks	like.	When	further	work	is	performed	on	the	collection,	it	is	saved	in	
the	catalog.	If	the	user	wants	to	embed	the	information—either	informational	or	adjustment	metadata—back	
in	the	file,	it	needs	to	be	exported	back	to	the	original	files.

Image Files
Stored on Disk

Export back to original
�les when desired.

Import Process Output

The user creates
and re�nes metadata and

image adjustments.

http://

Derivative Files Web Output

Slide Show OutputPrint Output

Photoshop Lightroom Catalog

1�
Non-Destructive	Imaging

Figure 1�: Photoshop	Lightroom	takes	the	functionality	of	a	cataloging	program	and	adds	a	rendering	engine.	
Since	both	functions—organizing	the	photos	and	adjusting	the	interpretation	of	the	photo—rely	on	metadata,	
it	makes	a	very	good	match.	By	bringing	these	tools	together,	it’s	easier	to	combine	picture	selection	with		
image	editing.

The use of a cataloging application also enables the photographer to back up and protect photos
in ways that a file browser directory-based workflow does not. Because the software knows what
should be there, it can help you in the event of media failure or another significant problem.
Furthermore, because the catalog knows about all the adjustments you have ever done to the
photos, it can help you preserve that work in a very efficient manner.

Catalog-based non-destructive editing, however, is counterintuitive at first for many
photographers. Until one understands how it works, moving between software programs can be
mysterious and frustrating, and work might seem to disappear in the handoff. The balance of this
paper will be devoted to providing a better understanding of the components of catalog-based
NDI and how it works.

1�
Non-Destructive	Imaging

File browsers versus cataloging software
To the new user, the difference between browsing software and cataloging software may look
more like an interface difference than anything else. Under the hood, however, there is a big
difference between the programs.

The truth is in the file
While browsing software may have a database that it uses to speed up the actions, it never uses
the database as a place to save information. File browsers merely cache information in their
databases. That is, they stash it there for quick access but always look to the original source file
to see if the cache is up to date and correct. If there is a mismatch between what is in the cache
and what is in the file, the file wins, and the cache is updated automatically with the information
from the file. This model is known as the truth is in the file.

When you make changes or add information to a photo with a file browser, the program will
want to write those changes or information back to the source file as fast as possible. When you
add keywords or make changes to the rendering metadata, the file browser is designed to offload
that information back to the file (or its adjacent sidecar file), since that’s the place where the truth
lives. And if the file is no longer visible to the file browser—because it’s been renamed, taken off-
line, or deleted—the file browser forgets the file ever existed.

This “truth is in the file” model is a very intuitive way to work, particularly if you are moving
from the physical world to the digital world. If we think about our photo collection as a bunch of
individual photos, it makes perfect sense that each freestanding image would contain everything
we know about that picture.

The challenge of managing a digital photography collection looks a lot more like managing
a forest than managing a bunch of trees, however. Once we factor in the challenges posed by
working with large groups of photos, things seem different. And when we add the functionality
made possible by database-driven catalogs, the advantages of the catalog model become
very clear.

The truth is in the catalog
As distinct from the file browser model described above, with cataloging software the informa-
tion about the photo is assumed to be most accurate in the catalog, rather than what may be
residing in the file itself. Of course, much of the information came from the file originally and
can be pushed back into the file when desired. But in the daily course of working with images,
the most complete and current information about the image is assumed to be what’s in the cata-
log database. We call this model the truth is in the catalog. Let’s examine this a bit.

When photos are first indexed by the cataloging software, several things happen. A record is
created for each photo file that will contain the information about it. A preview of the image is
created and stored in a place that can be accessed by the catalog, even if the file is not currently
available. Any metadata in the file gets harvested and is associated with the photo in the catalog.
The metadata then gets parsed into groups, such as creator name, keywords, ratings, or locations.

When you add information to the image using the cataloging software, such as adding a
keyword, you are just making a note in the catalog record for that photo. Unless you take some
specific action, the original image file will remain untouched. (In Photoshop Lightroom, you
can set a preference to write each change back to the file immediately—assuming that file is
connected to the computer—but this can really slow down the program.) Likewise, when you
make a rendering change to an image with catalog-based PIE software, you are changing the
information in the catalog and in the preview that gets cached, but you are not necessarily
touching the original file.

Because cataloging software has the capability to work with offline files, it must consider
the catalog information to be the “truth.” Otherwise, as soon as the files are connected again,
all the work done in the catalog would be lost, since it does not match what’s in the files.

If you’re used to working with browsers only, this can be puzzling at first. The cataloging soft-
ware shows that a keyword has been placed “on” a photo, but an inspection of it with another
program shows no keyword there. The keyword is associated with the photo in the catalog, but is
not actually stored within the photo file. While this takes a bit of getting used to, it has a number
of advantages, particularly for large and growing digital photo libraries.

1�
Non-Destructive	Imaging

Swapping the truth
At times, you’ll want to take the work you have done in the catalog and make it available for
other users or programs to see. For metadata this is most commonly done by writing the meta-
data back to the original file or its sidecar file. It gets a little stickier for the renderings.

Since the adjusted version of the photo is dependent on the rendering engine to display properly,
pushing the settings into the source file only works if the image will be viewed with a program
that has the identical rendering engine. There are a couple of options for making the adjustments
visible to other programs.

If your library is made up of proprietary raw files (and now RGB files for Photoshop Lightroom
and Adobe Photoshop Camera Raw 4), the only real option for making the rendering adjustments
universally visible is to create derivative files. New JPEG, TIFF, PSD, or DNG files can show the
adjusted image in a way that is accessible to nearly any program.

If your library is made up of DNG files, you can push an embedded preview back into the DNG
file. This semipermanent fixed rendering can make the adjustments visible to any program
and remains embedded in the source file itself for easy management. DNG is an ideal format
for making the work done in catalog-based PIE software portable, since it’s the only format that
can contain the mosaiced source image, all the metadata, and a user-created fixed rendering.

The advantages of catalog-based PIE software
The catalog configuration leverages what computers do best and protects against some of their fail-
ings. Catalog-based PIE software can gather, sort, group, and work on photos in ways not otherwise
possible. And just as important, it helps you to protect your images and your work from the kind of
sudden and total loss that can happen to digital assets. Let’s take a look at some of the benefits.

Associates information with one original
Catalog-based PIE software greatly simplifies the organizing and archiving of photos because
so much work can be associated with a single original source image. Information can be created,
stored, and cross-referenced in a single environment. Multiple renderings can be attached
to a single source image and managed from that same environment.

One of the greatest sources of confusion and storage bloat is the saving of multiple versions of the
same file. As discussed earlier, multiple versions are hard to sort and take up a lot of disk space.
By building an image collection that refers back—as much as possible—to a single and unchanging
source image, the user can achieve great savings in storage space, time, and confusion.

Creates useful groups from scattered images
Browser-based systems rely on folder structure as a central organizing principle (since they
browse folders and drives). This makes it difficult to bring together images that may not be stored
near each other. Ongoing projects and repeat clients generate work that is created at different
times and thus may be widely scattered in the file system. Since cataloging programs organize
by metadata, proximity in the directory structure is largely irrelevant.

Figure 1�: The	Metadata	Browser	in	Photoshop	Lightroom	lets		
a	user	look	at	an	entire	catalog	according	to	many	different	
criteria.	This	screenshot	shows	the	kinds	of	metadata	that	
Photoshop	Lightroom	harvests	and	gathers	together—date	
created,	location,	and	creator.	

By	gathering	this	information	in	a	single	place,	the	user	can	
quickly	find	particular	images	that	relate	to	each	other.	And	by	
cross-referencing	the	metadata—find	all	images	by	Alyson,	in	
North	Carolina,	created	in	August	2006—it’s	easy	to	find	sub-
groups	of	pictures,	even	if	they	are	nowhere	near	each	other		
in	the	file	system.

16
Non-Destructive	Imaging

Works with offline images
One of the most immediate benefits of cataloging software is that you can have access to photos
that may not be currently connected to your computer. If you travel, and your collection is too
big to bring, or if you have some photos archived offline, then cataloging software lets you look
through, tag, and group your photos as if they were present.

Eases backup and restoration tasks
One of the most important needs in any storage system is the ability to efficiently and securely
back up data, and to be able to restore that data in the event of some kind of media failure. The
cataloging software model brings a simplicity to the process that can’t be matched with any other
imaging system.

Because the original image is never changed by the software, it can be archived and backed up
early in the process, and does not need further backup, even after refinement of the metadata or
image adjustments. All the work done to the images in the cataloging software is represented by
the metadata in the catalog. Because the metadata is a small fraction of the size of the image data,
it’s a much more manageable task to back up this ever-changing data separately, without having
to worry about the unchanging image data.

In the event of drive failure, restoring a catalog-based system is a relatively straightforward
two-part process. The image files need to be restored from backup, and the catalog needs to be
restored from backup. If necessary, previews can be regenerated automatically, and any informa-
tion from the catalog can be pushed back into the newly restored files.

Figure 16: One	of	the	main	benefits	of	the	one	original	structure	of	cataloging	software	is	the	simplification		
of	backup	and	restoration	procedures.	

Source Image Files
Stored on Primary Disk

Primary Catalog

Copy Source Files
to Backup

Restore Images
to Primary Location

if Necessary
Restore Catalog

if Necessary

Automatic
Backup to

Additional Disk
Periodic Backup

to DVD

DVD Backup

Export Metadata when Necessary

Harvest Metadata on Import

1�
Non-Destructive	Imaging

Generates multiple output types from a single source
One of the great advantages of catalog-based NDI software is the ability to generate many kinds
of output from the same source image. Because all the information about the photos can be gath-
ered in a single environment and can be integrated with the ability to control them, the user has
unparalleled capacity to group and make use of photos on a collection-wide basis.

There can be many different ways to organize a collection of photographs. It might be useful to
group photos according to subject matter, client, usage, or quality rating. And once these group-
ings are created, one might wish to output a subcollection to print, a slide show, a web gallery,
or another derivative product.

Catalog-based PIE software that is integrated with a rendering engine can create these derivative
products even more efficiently than non-rendering cataloging software. It’s frequently desirable
to do a bit of touch-up to the image files on the way to output. Having that ability within the
same program that groups and sends files to output lets the user integrate picture selection and
image editing in a streamlined way.

Conclusion
Non-destructive imaging has seen a great increase in capabilities and user acceptance over the
last couple of decades, and that trend is likely to continue. While non-destructive imaging offers
some hurdles—the process requires a bit of a learning curve—the advantages are clear in terms
of cost savings, time savings, and creative freedom.

In the world of digital photography, catalog-based NDI systems are capturing lots of attention,
and rightly so. While the functions they enable will continue to increase in amazing ways, the
basic structure—a central catalog referencing a library of separate source images—is likely to
stay relatively constant. Understanding the components of catalog-based non-destructive imag-
ing systems enables you to make best use of these powerful tools.

1�
Non-Destructive	Imaging

Glossary

Catalog-based PIE software: Catalog-based PIE software is cataloging software that also includes
a parametric rendering engine.

Cataloging software: Cataloging software is a kind of database software that keeps track of
images and all the informational metadata about the images.

Default rendering: The default rendering is the way the image is displayed when it is first loaded
into PIE software.

Derivative file: A derivative file is a copy of a source image that is saved out to a separate file.
A derivative file may or may not have had explicit rendering or processing changes baked into it,
relative to its source image.

Engine-dependent rendering: An engine-dependent rendering is a version of an image that is
dependent on the rendering engine to be created.

Fixed rendering: A fixed rendering is a rendering of the image that is saved into pixel values or
printed on paper. In a color-managed workflow, it is not dependent on any particular rendering
engine to display correctly.

Informational metadata: Informational metadata is information that describes the content,
ownership, or usage of the image file. The most common examples of informational metadata
generally fall into EXIF or IPTC categories.

Live rendering: A live rendering is a view of the images that only exists when the image is loaded
into PIE software.

Non-destructive imaging (NDI): Any system of image adjustment that can be accomplished
without changing the original source image.

Parametric image editing or processing instruction editing (PIE): PIE is image adjustment by
means of rendering parameters. Instead of changing the original source image data, images are
sent through a rendering engine according to the user’s settings. These settings, or parameters,
can be saved as metadata.

PIE software: PIE software (also known as PIEware) is non-destructive software that adjusts
images through the use of rendering parameters and a rendering engine.

Preview: A preview is a semi-permanent fixed rendering used to speed up the display of an image
or to make the PIE rendering available to applications that don’t own the same rendering engine.

Rendered image: A rendered image is the result of image adjustment after the image has been
sent through a rendering engine.

Rendering engine: A rendering engine is the core software that performs image adjustments.

Rendering metadata: Rendering metadata refers to the instructions that control the rendering
engine. Rendering metadata can include both the default rendering parameters for an engine
as well as user-adjustable values for parameters, such as brightness or contrast.

Rendering parameters: Rendering parameters are instructions for adjustment and display
of image files.

Saved engine-dependent rendering: A saved engine-dependent rendering is a combination of a
source image, saved rendering metadata, and a rendering engine. It can be recreated by loading
the image back into the rendering engine along with the saved settings.

Source image: A source image is the original image. Most often this will be a camera raw file, but
a source image can be any file that is treated non-destructively as a source for subsequent usage.

ABOUT THE AUTHOR

Peter	Krogh	is	a	photographer	and	author	
specializing	in	digital	photography.	For	25	years,	
he	has	provided	photographs	for	magazines,	
corporations,	and	agencies	worldwide.	His	2005	
book,	The DAM Book	(O’Reilly)	is	the	most		
widely	read	book	on	digital	photography	
organization.	He	is	on	the	board	of	ASMP.	You	
can	see	his	photography	work	on	his	website,	
www.peterkrogh.com.

Adobe Systems Incorporated
345	Park	Avenue,	San	Jose,	CA	95110-2704	USA
www.adobe.com

Adobe,	the	Adobe	logo,	Lightroom,	and	Photoshop	are	either	reg-
istered	trademarks	or	trademarks	of	Adobe	Systems	Incorporated	
in	the	United	States	and/or	other	countries.	All	other	trademarks	
are	the	property	of	their	respective	owners.

©	2007	Adobe	Systems	Incorporated.	All	rights	reserved.		
12/07

